scispace - formally typeset
Search or ask a question
Author

Maria Gazda

Other affiliations: University of Gdańsk
Bio: Maria Gazda is an academic researcher from Gdańsk University of Technology. The author has contributed to research in topics: Conductivity & Ceramic. The author has an hindex of 23, co-authored 189 publications receiving 2781 citations. Previous affiliations of Maria Gazda include University of Gdańsk.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a series of Er3+-TiO2, Yb3+TiO 2 and Er3/Yb3-Ti2 photocatalysts were obtained via sol-gel method, using lanthanides precursor ranging from 0.25 to 10.
Abstract: A series of Er3+-TiO2, Yb3+-TiO2 and Er3+/Yb3+-TiO2 photocatalysts were obtained via sol–gel method, using lanthanides precursor ranging from 0.25 to 10 mol%. The experiments demonstrated that phenol in aqueous solutions was successfully degraded under visible light (λ > 450 nm) using Er/Yb-TiO2. The as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron emission spectroscopy (XPS), UV–vis absorption measurement, BET surface area analysis and luminescent spectroscopy. XPS analysis revealed that erbium and ytterbium were present in the form of oxides. The sample showing the highest photoactivity was in the form of anatase, its surface area equalled to 125 m2/g, average crystals size was 13 nm, and it was prepared introducing 1 mol% of Yb3+ into reaction medium. 3 h of irradiation resulted in 89% of phenol degradation under visible light. Action spectra analysis performed for the selected Er/Yb-TiO2 samples, revealed that irradiation from 420 to 475 nm is responsible for visible light photoactivity.

289 citations

Journal ArticleDOI
TL;DR: In this article, the effect of polyvinyl pyrrolidone (PVP) and polyvinylon alcohol (PVA) on the stabilization of obtained silver colloids was investigated.

256 citations

Journal ArticleDOI
TL;DR: A series of Ag-TiO2 photocatalysts were obtained in microemulsion system (water/AOT/cyclohexane), using several Ag precursor amounts ranging from 1.5 to 8.5 mol as mentioned in this paper.

172 citations

Journal ArticleDOI
TL;DR: In this article, the photoactivity of new rare earth metal-containing TiO 2 nanocomposites using sol-gel route and their photoactivity under visible and ultraviolet light is reported.

128 citations

Journal ArticleDOI
TL;DR: In this article, the effect of electrolyte composition, anodization voltage, ultrasonic treatment and calcination time on the morphology of the resulting thin films, as well as on their photocatalytic activity in toluene removal, used as a model volatile organic compound, was investigated.
Abstract: Vertically ordered TiO 2 nanotube arrays were synthesized by anodic oxidation of titanium foil in glycerol, ethylene glycol and water-based electrolytes. The effect of electrolyte composition, anodization voltage, ultrasonic treatment and calcination time on the morphology of the resulting thin films, as well as on their photocatalytic activity in toluene removal, used as a model volatile organic compound, was investigated. Toluene, at the concentration of about 100 ppm, was irradiated over TiO 2 nanotube arrays using xenon lamp and light-emitting diodes (LEDs) in four subsequent cycles. The results showed that toluene could be mostly removed from the air after 30 min of irradiation over TiO 2 nanotubes (NTs), even using LEDs (375 nm) as a irradiation source. Photoactivity increased with increasing of nanotubes lengths and decreasing of crystallite size. Thus, TiO 2 nanotube arrays formed in ethylene glycol-based electrolyte by applying voltage of 40 V, followed by 1-h calcination at 450 °C, revealed the highest photoactivity and may be used several times without any significant decrease in activity.

119 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting and its Applications d0 Metal Oxide Photocatalysts 6518 4.4.1.
Abstract: 2.3. Evaluation of Photocatalytic Water Splitting 6507 2.3.1. Photocatalytic Activity 6507 2.3.2. Photocatalytic Stability 6507 3. UV-Active Photocatalysts for Water Splitting 6507 3.1. d0 Metal Oxide Photocatalyts 6507 3.1.1. Ti-, Zr-Based Oxides 6507 3.1.2. Nb-, Ta-Based Oxides 6514 3.1.3. W-, Mo-Based Oxides 6517 3.1.4. Other d0 Metal Oxides 6518 3.2. d10 Metal Oxide Photocatalyts 6518 3.3. f0 Metal Oxide Photocatalysts 6518 3.4. Nonoxide Photocatalysts 6518 4. Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting 6519

6,332 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analyses of the chiral stationary phase transition of Na6(CO3)(SO4)2, Na2SO4, and Na2CO3 of the Na2O/Na2O 2 mixture at the stationary phase and shows clear patterns in the response of these two materials to each other.
Abstract: Jenny Schneider,*,† Masaya Matsuoka,‡ Masato Takeuchi,‡ Jinlong Zhang, Yu Horiuchi,‡ Masakazu Anpo,‡ and Detlef W. Bahnemann*,† †Institut fur Technische Chemie, Leibniz Universitaẗ Hannover, Callinstrasse 3, D-30167 Hannover, Germany ‡Faculty of Engineering, Osaka Prefecture University, 1 Gakuen-cho, Sakai Osaka 599-8531, Japan Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China

4,353 citations

Journal ArticleDOI
TL;DR: A short review of the types and properties of materials that have been considered for each of these components is presented with an emphasis on the requirements for operation at intermediate temperature (500−800 °C).
Abstract: Solid oxide fuel cells (SOFCs) have the promise to improve energy efficiency and to provide society with a clean energy producing technology. The high temperature of operation (500−1000 °C) enables the solid oxide fuel cell to operate with existing fossil fuels and to be efficiently coupled with turbines to give very high efficiency conversion of fuels to electricity. Solid oxide fuel cells are complex electrochemical devices that contain three basic components, a porous anode, an electrolyte membrane, and a porous cathode. In this short review, a survey of the types and properties of materials that have been considered for each of these components is presented with an emphasis on the requirements for operation at intermediate temperature (500−800 °C). Some directions for future research are discussed.

1,218 citations

Journal ArticleDOI
TL;DR: In this article, Wenzel, Cassie-Baxter and Miwa-Hashimoto have discussed the fundamental principles of self-cleaning hydrophilic and hydrophobic surfaces, which can have various advanced applications in microfluidics, printing, photovoltaic, biomedical devices, and water purification.
Abstract: Self-cleaning materials have gained considerable attention for both their unique properties and practical applications in energy and environmental areas. Recent examples of many TiO2-derived materials have been illustrated to understand the fundamental principles of self-cleaning hydrophilic and hydrophobic surfaces. Various models including those proposed by Wenzel, Cassie-Baxter and Miwa-Hashimoto are discussed to explain the mechanism of self-cleaning. Examples of semiconductor surfaces exhibiting the simultaneous occurrence of superhydrophilic and superhydrophobic domains on the same surface are illustrated, which can have various advanced applications in microfluidics, printing, photovoltaic, biomedical devices, anti-bacterial surfaces and water purification. Several strategies to improve the efficiency of photocatalytic self-cleaning property have been discussed including doping with metals and non-metals, formation of hetero-junctions between TiO2 and other low bandgap semiconductors, and fabrication of graphene based semiconductor nano-composites. Different mechanisms such as band-gap narrowing, formation of localized energy levels within the bandgap and formation of intrinsic defects such as oxygen vacancies have been suggested to account for the improved activity of doped TiO2 photocatalysts. Various preparation routes for developing efficient superhydrophilic–superhydrophobic patterns have been reviewed. In addition, reversible photo-controlled surfaces with tuneable hydrophilic/hydrophobic properties and its technological applications are discussed. Examples of antireflective surfaces exhibiting self-cleaning properties for the applications in solar cells and flat panel displays have also been provided. Discussion is provided on TiO2 based self-cleaning materials exhibiting hydrophilic and underwater superoleophobic properties and their utilities in water management, antifouling applications and separation of oil in water emulsions are discussed. In addition, ISO testing methods (ISO 27448: 2009, ISO 10678: 2010 and ISO 27447: 2009) for analysing self-cleaning activity and antibacterial action have also been discussed. Rapid photocatalytic self-cleaning testing methods using various photocatalytic activity indicator inks such as resazurin (Rz), basic blue 66 (BB66) and acid violet 7(AV7) for a broad range of materials such as commercial paints, tiles and glasses are also described. Various commercial products such as glass, tiles, fabrics, cement and paint materials developed based on the principle of photo-induced hydrophilic conversion of TiO2 surfaces have also been provided. The wide ranges of practical applications of self-cleaning photocatalytic materials suggest further development to improve their efficiency and utilities. It was concluded that a rational fabrication of multifunctional photocatalytic materials by integrating biological inspired structures with tunable wettability would be favorable to address a number of existing environmental concerns.

712 citations