scispace - formally typeset
Search or ask a question
Author

Maria Kanakidou

Bio: Maria Kanakidou is an academic researcher from University of Crete. The author has contributed to research in topics: Aerosol & Deposition (aerosol physics). The author has an hindex of 56, co-authored 174 publications receiving 13990 citations. Previous affiliations of Maria Kanakidou include Max Planck Society & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors reviewed existing knowledge with regard to organic aerosol (OA) of importance for global climate modelling and defined critical gaps needed to reduce the involved uncertainties, and synthesized the information to provide a continuous analysis of the flow from the emitted material to the atmosphere up to the point of the climate impact of the produced organic aerosols.
Abstract: The present paper reviews existing knowledge with regard to Organic Aerosol (OA) of importance for global climate modelling and defines critical gaps needed to reduce the involved uncertainties. All pieces required for the representation of OA in a global climate model are sketched out with special attention to Secondary Organic Aerosol (SOA): The emission estimates of primary carbonaceous particles and SOA precursor gases are summarized. The up-to-date understanding of the chemical formation and transformation of condensable organic material is outlined. Knowledge on the hygroscopicity of OA and measurements of optical properties of the organic aerosol constituents are summarized. The mechanisms of interactions of OA with clouds and dry and wet removal processes parameterisations in global models are outlined. This information is synthesized to provide a continuous analysis of the flow from the emitted material to the atmosphere up to the point of the climate impact of the produced organic aerosol. The sources of uncertainties at each step of this process are highlighted as areas that require further studies.

2,863 citations

Journal ArticleDOI
TL;DR: A review of the state of scientific understanding in relation to global and regional air quality is outlined in this article, in terms of emissions, processing and transport of trace gases and aerosols.

760 citations

Journal ArticleDOI
01 Nov 1995-Nature
TL;DR: In this article, the presence of high concentrations of acetone and methanol in the free troposphere has been reported, indicating that acetone photochemistry provides a quantitatively significant pathway for sequestering NOx in the form of peroxyacetylnitrate, a relatively unreactive temporary reservoir of NOx.
Abstract: OXYGENATED species in the atmosphere are important sources of free radicals and are intricately linked with the fate of nitrogen oxides (NOx), which are themselves necessary for tropospheric ozone formation1,2. With the exception of formaldehyde, oxygenated hydrocarbons have rarely been measured in the free troposphere. Here we report airborne measurements indicating the presence of high concentrations (compared to those of routinely measured C2–C6 tropospheric hydrocarbons3,4) of acetone and methanol. We use a three-dimensional model to show that acetone photochemistry provides a quantitatively significant (up to 50%) pathway for sequestering NOx in the form of peroxyacetylnitrate, a relatively unreactive temporary reservoir of NOx. Furthermore, in the dry regions of the upper troposphere, acetone can provide a large primary source of HOx (OH + HO2) radicals, resulting in increased ozone production. This surprisingly significant contribution of such oxygenated hydrocarbons to tropospheric NOx, HOx and ozone cycling is likely to be affected by their changing natural and anthropogenic emissions due to land-use change, biomass burning and alcohol-based biofuel use.

621 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss and prioritizes issues related to organic aerosols and their effects on atmospheric processes and climate, providing a basis for future activities in the field.
Abstract: In spite of impressive advances in recent years, our present understanding of organic aerosol (OA) composition, physical and chemical properties, sources and transformation characteristics is still rather limited, and their environmental effects remain highly uncertain. This paper discusses and prioritizes issues related to organic aerosols and their effects on atmospheric processes and climate, providing a basis for future activities in the field. Four main topical areas are addressed: i) sources of OA; ii) formation transformation and removal of OA; iii) physical, chemical and mixing state of OA; iv) atmospheric modelling of OA. Key questions and research priorities regarding these four areas are synthesized in this paper, and outstanding issues for future research are presented for each topical area. In addition, an effort is made to formulate a basic set of consistent and universally applicable terms and definitions for coherent description of atmospheric OA across different scales and disciplines.

460 citations

Journal ArticleDOI
Markku Kulmala1, Ari Asmi1, Hanna Lappalainen2, Hanna Lappalainen1, Urs Baltensperger3, J. L. Brenguier, Maria Cristina Facchini4, Hans-Christen Hansson5, Øystein Hov6, Colin D. O'Dowd7, Ulrich Pöschl8, Alfred Wiedensohler9, R. Boers10, Olivier Boucher11, Olivier Boucher12, G. de Leeuw1, G. de Leeuw2, H. A. C. Denier van der Gon, Johann Feichter8, Radovan Krejci5, Paolo Laj13, Heikki Lihavainen2, Ulrike Lohmann14, Gordon McFiggans15, Thomas F. Mentel, Christodoulos Pilinis16, Ilona Riipinen17, Ilona Riipinen1, Michael Schulz6, Andreas Stohl18, Erik Swietlicki19, Elisabetta Vignati, Célia Alves20, Markus Amann21, Markus Ammann3, Sylwester Arabas22, Paulo Artaxo23, Holger Baars9, David C. S. Beddows24, Robert Bergström25, Johan P. Beukes26, Merete Bilde27, John F. Burkhart18, Francesco Canonaco3, Simon L. Clegg28, Hugh Coe15, Suzanne Crumeyrolle29, Barbara D'Anna30, Stefano Decesari4, Stefania Gilardoni, Marc Fischer, A. M. Fjaeraa18, Christos Fountoukis17, Christian George30, L. Gomes, Paul R. Halloran12, Thomas Hamburger, Roy M. Harrison24, Hartmut Herrmann9, Thorsten Hoffmann31, Corinna Hoose32, Min Hu33, Antti-Pekka Hyvärinen2, Urmas Hõrrak34, Yoshiteru Iinuma9, Trond Iversen6, Miroslav Josipovic26, Maria Kanakidou35, Astrid Kiendler-Scharr, Alf Kirkevåg6, Gyula Kiss36, Zbigniew Klimont21, Pekka Kolmonen2, Mika Komppula2, Jón Egill Kristjánsson37, Lauri Laakso26, Lauri Laakso1, Lauri Laakso2, Ari Laaksonen2, Ari Laaksonen38, Laurent C.-Labonnote11, V. A. Lanz3, Kari E. J. Lehtinen38, Kari E. J. Lehtinen2, Luciana V. Rizzo23, Risto Makkonen1, Hanna E. Manninen1, Gavin R. McMeeking15, Joonas Merikanto1, Andreas Minikin, Sander Mirme, William T. Morgan15, Eiko Nemitz, D. O'Donnell8, T. S. Panwar39, Hanna Pawlowska22, Andreas Petzold, Jacobus J. Pienaar26, Casimiro Pio20, C. Plass-Duelmer40, André S. H. Prévôt3, Sara C. Pryor, Carly Reddington41, G. Roberts10, Daniel Rosenfeld42, Joshua P. Schwarz, Øyvind Seland6, Karine Sellegri43, X. J. Shen, Manabu Shiraiwa8, Holger Siebert9, B. Sierau14, David Simpson6, David Simpson44, J. Y. Sun, David Topping15, Peter Tunved5, Petri Vaattovaara38, Ville Vakkari1, J. P. Veefkind10, Antoon Visschedijk, Henri Vuollekoski1, R. Vuolo, Birgit Wehner9, J. Wildt, Simon Woodward12, D. R. Worsnop2, D. R. Worsnop1, G.-J. van Zadelhoff10, A. A. Zardini27, Kai Zhang8, P. G. van Zyl26, Veli-Matti Kerminen2, Kenneth S. Carslaw41, Spyros N. Pandis17 
TL;DR: The European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI) as mentioned in this paper was the first project to study aerosol processes fron nano to global scale and their effects on climate and air quality.
Abstract: In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan-European aerosol emissions inventory was developed and evaluated, a new cluster spectrometer was built and tested in the field and several new aerosol parameterizations and computations modules for chemical transport and global climate models were developed and evaluated. These achievements and related studies have substantially improved our understanding and reduced the uncertainties of aerosol radiative forcing and air quality-climate interactions. The EUCAARI results can be utilized in European and global environmental policy to assess the aerosol impacts and the corresponding abatement strategies.

360 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors proposed a new approach to global sustainability in which they define planetary boundaries within which they expect that humanity can operate safely. But the proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development.
Abstract: Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due to the risk of crossing thresholds that will trigger non-linear, abrupt environmental change within continental- to planetary-scale systems. We have identified nine planetary boundaries and, drawing upon current scientific understanding, we propose quantifications for seven of them. These seven are climate change (CO2 concentration in the atmosphere <350 ppm and/or a maximum change of +1 W m-2 in radiative forcing); ocean acidification (mean surface seawater saturation state with respect to aragonite ≥ 80% of pre-industrial levels); stratospheric ozone (<5% reduction in O3 concentration from pre-industrial level of 290 Dobson Units); biogeochemical nitrogen (N) cycle (limit industrial and agricultural fixation of N2 to 35 Tg N yr-1) and phosphorus (P) cycle (annual P inflow to oceans not to exceed 10 times the natural background weathering of P); global freshwater use (<4000 km3 yr-1 of consumptive use of runoff resources); land system change (<15% of the ice-free land surface under cropland); and the rate at which biological diversity is lost (annual rate of <10 extinctions per million species). The two additional planetary boundaries for which we have not yet been able to determine a boundary level are chemical pollution and atmospheric aerosol loading. We estimate that humanity has already transgressed three planetary boundaries: for climate change, rate of biodiversity loss, and changes to the global nitrogen cycle. Planetary boundaries are interdependent, because transgressing one may both shift the position of other boundaries or cause them to be transgressed. The social impacts of transgressing boundaries will be a function of the social-ecological resilience of the affected societies. Our proposed boundaries are rough, first estimates only, surrounded by large uncertainties and knowledge gaps. Filling these gaps will require major advancements in Earth System and resilience science. The proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development. Planetary boundaries define, as it were, the boundaries of the "planetary playing field" for humanity if we want to be sure of avoiding major human-induced environmental change on a global scale.

4,771 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a global model to estimate emissions of volatile organic compounds from natural sources (NVOC), which has a highly resolved spatial grid and generates hourly average emission estimates.
Abstract: Numerical assessments of global air quality and potential changes in atmospheric chemical constituents require estimates of the surface fluxes of a variety of trace gas species. We have developed a global model to estimate emissions of volatile organic compounds from natural sources (NVOC). Methane is not considered here and has been reviewed in detail elsewhere. The model has a highly resolved spatial grid (0.5° × 0.5° latitude/longitude) and generates hourly average emission estimates. Chemical species are grouped into four categories: isoprene, monoterpenes, other reactive VOC (ORVOC), and other VOC (OVOC). NVOC emissions from oceans are estimated as a function of geophysical variables from a general circulation model and ocean color satellite data. Emissions from plant foliage are estimated from ecosystem specific biomass and emission factors and algorithms describing light and temperature dependence of NVOC emissions. Foliar density estimates are based on climatic variables and satellite data. Temporal variations in the model are driven by monthly estimates of biomass and temperature and hourly light estimates. The annual global VOC flux is estimated to be 1150 Tg C, composed of 44% isoprene, 11% monoterpenes, 22.5% other reactive VOC, and 22.5% other VOC. Large uncertainties exist for each of these estimates and particularly for compounds other than isoprene and monoterpenes. Tropical woodlands (rain forest, seasonal, drought-deciduous, and savanna) contribute about half of all global natural VOC emissions. Croplands, shrublands and other woodlands contribute 10–20% apiece. Isoprene emissions calculated for temperate regions are as much as a factor of 5 higher than previous estimates.

3,859 citations

01 Jan 1989
TL;DR: In this article, a two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea.
Abstract: Abstract A two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea. The domain includes a representation of part of Borneo as well as the sea so that the model can simulate the initiation of convection. Also included in the model are parameterizations of mesoscale ice phase and moisture processes and longwave and shortwave radiation with a diurnal cycle. This allows use of the model to test the relative importance of various heating mechanisms to the stratiform cloud deck, which typically occupies several hundred kilometers of the domain. Frank and Cohen's cumulus parameterization scheme is employed to represent vital unresolved vertical transports in the convective area. The major conclusions are: Ice phase processes are important in determining the level of maximum large-scale heating and vertical motion because there is a strong anvil componen...

3,813 citations

Journal ArticleDOI
TL;DR: The Model of Emissions of Gases and Aerosols from Nature (MEGAN) is used to quantify net terrestrial biosphere emission of isoprene into the atmosphere as mentioned in this paper.
Abstract: . Reactive gases and aerosols are produced by terrestrial ecosystems, processed within plant canopies, and can then be emitted into the above-canopy atmosphere. Estimates of the above-canopy fluxes are needed for quantitative earth system studies and assessments of past, present and future air quality and climate. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) is described and used to quantify net terrestrial biosphere emission of isoprene into the atmosphere. MEGAN is designed for both global and regional emission modeling and has global coverage with ~1 km2 spatial resolution. Field and laboratory investigations of the processes controlling isoprene emission are described and data available for model development and evaluation are summarized. The factors controlling isoprene emissions include biological, physical and chemical driving variables. MEGAN driving variables are derived from models and satellite and ground observations. Tropical broadleaf trees contribute almost half of the estimated global annual isoprene emission due to their relatively high emission factors and because they are often exposed to conditions that are conducive for isoprene emission. The remaining flux is primarily from shrubs which have a widespread distribution. The annual global isoprene emission estimated with MEGAN ranges from about 500 to 750 Tg isoprene (440 to 660 Tg carbon) depending on the driving variables which include temperature, solar radiation, Leaf Area Index, and plant functional type. The global annual isoprene emission estimated using the standard driving variables is ~600 Tg isoprene. Differences in driving variables result in emission estimates that differ by more than a factor of three for specific times and locations. It is difficult to evaluate isoprene emission estimates using the concentration distributions simulated using chemistry and transport models, due to the substantial uncertainties in other model components, but at least some global models produce reasonable results when using isoprene emission distributions similar to MEGAN estimates. In addition, comparison with isoprene emissions estimated from satellite formaldehyde observations indicates reasonable agreement. The sensitivity of isoprene emissions to earth system changes (e.g., climate and land-use) demonstrates the potential for large future changes in emissions. Using temperature distributions simulated by global climate models for year 2100, MEGAN estimates that isoprene emissions increase by more than a factor of two. This is considerably greater than previous estimates and additional observations are needed to evaluate and improve the methods used to predict future isoprene emissions.

3,746 citations