scispace - formally typeset
Search or ask a question
Author

Maria Kibaek

Other affiliations: Boston Children's Hospital
Bio: Maria Kibaek is an academic researcher from Odense University Hospital. The author has contributed to research in topics: Autism & Intellectual disability. The author has an hindex of 13, co-authored 27 publications receiving 604 citations. Previous affiliations of Maria Kibaek include Boston Children's Hospital.

Papers
More filters
Journal ArticleDOI
TL;DR: Genotype-phenotype analysis confirmed that ZFHX1B deletions and stop mutations result in a recognizable facial dysmorphism with associated severe mental retardation and variable malformations such as Hirschsprung disease and congenital heart defects and indicates that structural eye anomalies such as microphthalmia should be considered as part of the MWS spectrum.

134 citations

Journal ArticleDOI
TL;DR: Five individuals with coloboma, microcephaly, developmental delay, short stature, and craniofacial, cardiac, and renal defects who harbor overlapping microdeletions on 8q24.3 are reported on to demonstrate how CNVs can exhibit complex genetic architecture.
Abstract: Copy-number variants (CNVs) represent a significant interpretative challenge, given that each CNV typically affects the dosage of multiple genes. Here we report on five individuals with coloboma, microcephaly, developmental delay, short stature, and craniofacial, cardiac, and renal defects who harbor overlapping microdeletions on 8q24.3. Fine mapping localized a commonly deleted 78 kb region that contains three genes: SCRIB, NRBP2, and PUF60. In vivo dissection of the CNV showed discrete contributions of the planar cell polarity effector SCRIB and the splicing factor PUF60 to the syndromic phenotype, and the combinatorial suppression of both genes exacerbated some, but not all, phenotypic components. Consistent with these findings, we identified an individual with microcephaly, short stature, intellectual disability, and heart defects with a de novo c.505C>T variant leading to a p.His169Tyr change in PUF60. Functional testing of this allele in vivo and in vitro showed that the mutation perturbs the relative dosage of two PUF60 isoforms and, subsequently, the splicing efficiency of downstream PUF60 targets. These data inform the functions of two genes not associated previously with human genetic disease and demonstrate how CNVs can exhibit complex genetic architecture, with the phenotype being the amalgam of both discrete dosage dysfunction of single transcripts and also of binary genetic interactions.

80 citations

Journal ArticleDOI
TL;DR: The role of SLC2A1 mutations in absence epilepsy with early onset is confirmed and the notion that SLC1A1 aberrations are a cause of MAE without associated features such as movement disorders is failed to support.
Abstract: The first mutations identified in SLC2A1, encoding the glucose transporter type 1 (GLUT1) protein of the blood-brain barrier, were associated with severe epileptic encephalopathy. Recently, dominant SLC2A1 mutations were found in rare autosomal dominant families with various forms of epilepsy including early onset absence epilepsy (EOAE), myoclonic astatic epilepsy (MAE), and genetic generalized epilepsy (GGE). Our study aimed to investigate the possible role of SLC2A1 in various forms of epilepsy including MAE and absence epilepsy with early onset. We also aimed to estimate the frequency of GLUT1 deficiency syndrome in the Danish population. One hundred twenty patients with MAE, 50 patients with absence epilepsy, and 37 patients with unselected epilepsies, intellectual disability (ID), and/or various movement disorders were screened for mutations in SLC2A1. Mutations in SLC2A1 were detected in 5 (10%) of 50 patients with absence epilepsy, and in one (2.7%) of 37 patient with unselected epilepsies, ID, and/or various movement disorders. None of the 120 MAE patients harbored SLC2A1 mutations. We estimated the frequency of SLC2A1 mutations in the Danish population to be approximately 1:83,000. Our study confirmed the role of SLC2A1 mutations in absence epilepsy with early onset. However, our study failed to support the notion that SLC2A1 aberrations are a cause of MAE without associated features such as movement disorders.

67 citations

Journal ArticleDOI
TL;DR: It is confirmed that de novo SMC3 mutations account for ∼1%–2% of CdLS‐like phenotypes, and modeling of the mutation effects on protein structure suggests a dominant‐negative effect on the multimeric cohesin complex.
Abstract: Cornelia de Lange syndrome (CdLS) is characterized by facial dysmorphism, growth failure, intellectual disability, limb malformations, and multiple organ involvement. Mutations in five genes, encoding subunits of the cohesin complex (SMC1A, SMC3, RAD21) and its regulators (NIPBL, HDAC8), account for at least 70% of patients with CdLS or CdLS-like phenotypes. To date, only the clinical features from a single CdLS patient with SMC3 mutation has been published. Here, we report the efforts of an international research and clinical collaboration to provide clinical comparison of 16 patients with CdLS-like features caused by mutations in SMC3. Modeling of the mutation effects on protein structure suggests a dominant-negative effect on the multimeric cohesin complex. When compared with typical CdLS, many SMC3-associated phenotypes are also characterized by postnatal microcephaly but with a less distinctive craniofacial appearance, a milder prenatal growth retardation that worsens in childhood, few congenital heart defects, and an absence of limb deficiencies. While most mutations are unique, two unrelated affected individuals shared the same mutation but presented with different phenotypes. This work confirms that de novo SMC3 mutations account for approximate to 1%-2% of CdLS-like phenotypes.

66 citations

Journal ArticleDOI
TL;DR: The cause of a neurodegenerative syndrome linked to snRNA maturation is identified and a key factor involved in the processing of snRNA 3′ ends is uncovered.
Abstract: Jens Lykke-Andersen, Frank Baas, Joseph Gleeson and colleagues report that mutations in the 3′ exonuclease TOE1 cause pontocerebellar hypoplasia type 7. They further show that these mutations result in the accumulation of incompletely processed small nuclear RNAs, leading to severe, early-onset neurodegeneration.

55 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Using an improved computational approach for circular RNA identification, widespread circular RNA expression is found in Drosophila melanogaster and it is estimated that in humans, circular RNA may account for 1% as many molecules as poly(A) RNA.
Abstract: Thousands of loci in the human and mouse genomes give rise to circular RNA transcripts; at many of these loci, the predominant RNA isoform is a circle. Using an improved computational approach for circular RNA identification, we found widespread circular RNA expression in Drosophila melanogaster and estimate that in humans, circular RNA may account for 1% as many molecules as poly(A) RNA. Analysis of data from the ENCODE consortium revealed that the repertoire of genes expressing circular RNA, the ratio of circular to linear transcripts for each gene, and even the pattern of splice isoforms of circular RNAs from each gene were cell-type specific. These results suggest that biogenesis of circular RNA is an integral, conserved, and regulated feature of the gene expression program.

1,567 citations

Journal ArticleDOI
TL;DR: Isolated HSCR appears to be a non-Mendelian malformation with low, sex-dependent penetrance, and variable expression according to the length of the aganglionic segment, which stands as a model for genetic disorders with complex patterns of inheritance.
Abstract: Hirschsprung disease (HSCR, aganglionic megacolon) represents the main genetic cause of functional intestinal obstruction with an incidence of 1/5000 live births. This developmental disorder is a neurocristopathy and is characterised by the absence of the enteric ganglia along a variable length of the intestine. In the last decades, the development of surgical approaches has importantly decreased mortality and morbidity which allowed the emergence of familial cases. Isolated HSCR appears to be a non-Mendelian malformation with low, sex-dependent penetrance, and variable expression according to the length of the aganglionic segment. While all Mendelian modes of inheritance have been described in syndromic HSCR, isolated HSCR stands as a model for genetic disorders with complex patterns of inheritance. The tyrosine kinase receptor RET is the major gene with both rare coding sequence mutations and/or a frequent variant located in an enhancer element predisposing to the disease. Hitherto, 10 genes and five loci have been found to be involved in HSCR development.

1,109 citations

Journal ArticleDOI
TL;DR: Genetics, animal models and detailed structural neuroimaging are now providing insights into the developmental and molecular bases of AgCC, and studies using neuropsychological, electroencephalogram and functional MRI approaches are examining the resulting impairments in emotional and social functioning.
Abstract: Agenesis of the corpus callosum (AgCC), a failure to develop the large bundle of fibres that connect the cerebral hemispheres, occurs in 1:4000 individuals. Genetics, animal models and detailed structural neuroimaging are now providing insights into the developmental and molecular bases of AgCC. Studies using neuropsychological, electroencephalogram and functional MRI approaches are examining the resulting impairments in emotional and social functioning, and have begun to explore the functional neuroanatomy underlying impaired higher-order cognition. The study of AgCC could provide insight into the integrated cerebral functioning of healthy brains, and may offer a model for understanding certain psychiatric illnesses, such as schizophrenia and autism.

703 citations

Journal Article
TL;DR: In this article, the authors discuss evidence that copy-number variants affect phenotypes, directions for basic knowledge to support clinical study of CNVs, the challenge of genotyping CNPs in clinical cohorts, the use of SNPs as markers for CNPs and statistical challenges in testing CNVs for association with disease.
Abstract: The central goal of human genetics is to understand the inherited basis of human variation in phenotypes, elucidating human physiology, evolution and disease. Rare mutations have been found underlying two thousand mendelian diseases; more recently, it has become possible to assess systematically the contribution of common SNPs to complex disease. The known role of copy-number alterations in sporadic genomic disorders, combined with emerging information about inherited copy-number variation, indicate the importance of systematically assessing copy-number variants (CNVs), including common copy-number polymorphisms (CNPs), in disease. Here we discuss evidence that CNVs affect phenotypes, directions for basic knowledge to support clinical study of CNVs, the challenge of genotyping CNPs in clinical cohorts, the use of SNPs as markers for CNPs and statistical challenges in testing CNVs for association with disease. Critical needs are high-resolution maps of common CNPs and techniques that accurately determine the allelic state of affected individuals.

583 citations

Journal ArticleDOI
TL;DR: This Review describes how structural variants can affect molecular and cellular processes, leading to complex organismal phenotypes, including human disease, and presents advances in delineating disease-causing elements that are affected by structural variants.
Abstract: Genomic structural variants have long been implicated in phenotypic diversity and human disease, but dissecting the mechanisms by which they exert their functional impact has proven elusive. Recently however, developments in high-throughput DNA sequencing and chromosomal engineering technology have facilitated the analysis of structural variants in human populations and model systems in unprecedented detail. In this Review, we describe how structural variants can affect molecular and cellular processes, leading to complex organismal phenotypes, including human disease. We further present advances in delineating disease-causing elements that are affected by structural variants, and we discuss future directions for research on the functional consequences of structural variants.

520 citations