scispace - formally typeset
Search or ask a question
Author

Maria Maridaki

Bio: Maria Maridaki is an academic researcher from National and Kapodistrian University of Athens. The author has contributed to research in topics: Skeletal muscle & Medicine. The author has an hindex of 22, co-authored 68 publications receiving 1581 citations. Previous affiliations of Maria Maridaki include University of California, San Francisco.


Papers
More filters
Journal Article
TL;DR: Specific signaling pathways downstream of IGF-1, potentially involved in the mitogenic and myogenic responses and mediating skeletal muscle protein synthesis and hypertrophy following exercise-induced muscle overloading and damage, are discussed.
Abstract: Skeletal muscle is able not only to increase its mass as an adaptation to mechanical loading generated by and imposed upon muscle but also to regenerate after damage, via its intrinsic regulation of gene transcription. Both cellular processes, muscle regeneration and hypertrophy, are mediated by the activation, proliferation and differentiation of muscle satellite cells and appear to be modulated by the mitotic and myogenic activity of locally produced insulin-like growth factor 1 (IGF-1), which functions in an autocrine/paracrine mode. Differentiation of satellite cells into myoblasts involves the regulation of skeletal muscle-specific proteins belonging to the family of myogenic regulatory factors (MRFs). The endocrine, autocrine and paracrine functions of IGF-1 are mediated through binding to the type I IGF receptor (IGF-1.R), which is a ligand-activated receptor tyrosine kinase. The binding of IGF-1 to IGF-1.R induces its autophosphorylation, which recruits specific cytoplasmic molecules containing the Insulin Receptor Substrate Proteins (IRS). The recruitment of IRS proteins by IGF-1/IGF-1.R binding is a critical level at which the proliferative and differentiative actions of IGF-1 diverge. Specific signaling pathways downstream of IGF-1, potentially involved in the mitogenic and myogenic responses and mediating skeletal muscle protein synthesis and hypertrophy following exercise-induced muscle overloading and damage, are discussed. A potential alternative activation of different signaling pathway(s) via a different receptor remains to be demonstrated.

179 citations

Journal Article
01 Jan 2007-in Vivo
TL;DR: The concept that the competing processes of cellular proliferation and differentiation and the increased protein synthesis required for muscle repair or hypertrophic adaptation are regulated by a differential expression and by distinct roles of IGF-1 isoforms is discussed in the present review.
Abstract: The human insulin-like growth factor-1 (IGF-1) gene gives rise to multiple, heterogeneous mRNA transcripts through a combination of multiple transcription initiation sites, alternative splicing and different polyadenylation signals. These IGF-1 mRNA transcripts code different isoforms of the precursor peptide of IGF-1 (IGF-1Ea, IGF-1Eb and IGF-1Ec or MGF in human skeletal muscle), which also undergo post-translational modification. There is increasing interest in differential expression and implication of IGF-1 isoforms in the regulation of muscle fiber regeneration and hypertrophy following mechanical overloading and damage. The identification of a locally expressed, loading- or damage-sensitive IGF-1 isoform in skeletal muscle was one of the most attractive developments in the context of the autocrine/paracrine actions of IGF-1. The concept that the competing processes of cellular proliferation and differentiation and the increased protein synthesis required for muscle repair or hypertrophic adaptation are regulated by a differential expression and by distinct roles of IGF-1 isoforms is discussed in the present review.

149 citations

Journal ArticleDOI
TL;DR: Short-term HIT attenuates oxidative stress and up-regulates antioxidant activity after only nine training sessions totaling 22 min of high intensity exercise, further supporting its positive effect not only on physical conditioning but also on health promotion.

142 citations

Journal Article
01 Jul 2009-in Vivo
TL;DR: The notion that tissue-specific mRNA expression of MGF isoform produces mature IGF-1 and MGF E peptides which possibly act as distinct mitogens in skeletal muscle regeneration is supported.
Abstract: Different insulin-like growth factor-1 (IGF-1) isoforms, namely IGF-1Ea, IGF-1Eb and IGF-1Ec (MGF), have been proposed to have various functions in muscle repair and growth. To gain insight into the potentially differential actions of IGF-1 isoforms in the regulation of muscle regeneration, we assessed the time course of their expressions at both mRNA and protein levels after exercise-induced muscle damage in humans. In addition, we characterized mature IGF-1 and synthetic MGF E peptide signalling in C2C12 myoblast-like cells in vitro. Ten healthy male volunteers were subjected to exercise-induced muscle damage and biopsy samples were taken from the exercised muscles before and 6 h, 2, 5 and 16 days post exercise. Muscle damage was documented by specific functional and biochemical responses post exercise. PCR-based analyses of muscle biopsy samples revealed a rapid and transient up-regulation of MGF mRNA expression which was followed by a prolonged increase of IGF-1Ea and IGF-1Eb mRNA expression (p<0.05). Patterns similar to those for mRNA expression were detected for MGF and IGF-1Ea expression at the protein level. The action of synthetic MGF E peptide differed from that of mature IGF-1 since its proliferative effect on C2C12 myoblast-like cells was not blocked by an anti-IGF-1 receptor neutralizing antibody and it did not phosphorylate Akt. Therefore, we conclude that the differential expression profile of IGF-1 isoforms in vivo and the possible IGF-1R - independent MGF E peptide signalling in skeletal muscle-like cells in vitro support the notion that tissue-specific mRNA expression of MGF isoform produces mature IGF-1 and MGF E peptides which possibly act as distinct mitogens in skeletal muscle regeneration.

106 citations

Journal ArticleDOI
TL;DR: It was suggested that the shift in the angle-force curve was proportional to the degree of muscle damage and may be explained by the presence of overstretched sarcomeres that increased in series compliance of the muscle.
Abstract: The aim of this study was to explore and compare the magnitude and time-course of the shift in the angle-force curves obtained from maximal voluntary contractions of the elbow flexors, both before and 4 consecutive days after eccentric and isometric exercise. The maximal isometric force of the elbow flexors of fourteen young male volunteers was measured at five different elbow angles between 50° and 160°. Subjects were then divided into two groups: the eccentric group (ECC, n=7) and the isometric group (ISO, n=7). Subjects in the ECC group performed 50 maximal voluntary eccentric contractions of the elbow flexors on an isokinetic dynamometer (30°.s−1), while subjects in the ISO group performed 50 maximal voluntary isometric muscle contractions with the elbow flexors at a lengthened position. Following the ECC and ISO exercise protocols, maximal isometric force at the five angles, muscle soreness, and the relaxed (RANG) and flexed (FANG) elbow angles were measured at 24 h intervals for 4 days. All results were presented as the mean and standard error, and a quadratic curve was used to model the maximal isometric force data obtained at the five elbow angles. This approach not only allowed us to mathematically describe the angle-force curves and estimate the peak force and optimum angle for peak force generation, but also enabled us to statistically compare the shift of the angle-force curves between and within groups. A large and persistent shift of the angle-force curve towards longer muscle lengths was observed 1 day after eccentric exercise (P<0.01). This resulted in a ~16° shift of the optimum angle for force generation, which remained unchanged for the whole observation period. A smaller but also persistent shift of the angle-force curve was seen after isometric exercise at long muscle length (P<0.05; shift in optimum angle ~5°). ECC exercise caused more muscle damage than ISO exercise, as indicated by the greater changes in RANG and ratings of muscle soreness (P<0.05). It was suggested that the shift in the angle-force curve was proportional to the degree of muscle damage and may be explained by the presence of overstretched sarcomeres that increased in series compliance of the muscle.

104 citations


Cited by
More filters
01 Jan 2016
TL;DR: The using multivariate statistics is universally compatible with any devices to read, allowing you to get the most less latency time to download any of the authors' books like this one.
Abstract: Thank you for downloading using multivariate statistics. As you may know, people have look hundreds times for their favorite novels like this using multivariate statistics, but end up in infectious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they juggled with some harmful bugs inside their laptop. using multivariate statistics is available in our digital library an online access to it is set as public so you can download it instantly. Our books collection saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the using multivariate statistics is universally compatible with any devices to read.

14,604 citations

Journal ArticleDOI
TL;DR: For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved the understanding of skeletal muscle biology, with focuses on functions of satellite cells and their niche during the process ofletal muscle regeneration.
Abstract: Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process invol...

1,585 citations

Journal Article
TL;DR: This beautifully printed and well-illustrated stiff paperbacked volume is, and will for a few years yet remain, an invaluable companion to a full-scale textbook on congenital heart disease.
Abstract: argument is often, if not acrimonious, at least heated. It gives an impression of the fluidity of opinion on many fundamental ideas under discussion and of the urgency with which cardiac cyanosis in the newborn is regarded. When Dr. William Muscott says that the earliest he has operated for pulmonary stenosis is on an infant 3 days old, and Sir Russell Brock agrees that the earlier in the first month that operation is undertaken the better, and when Dr. Varco asks Dr. Senning 'so far as I know they have never yet catheterized any child intrauterine in Sweden, but they have done it through the delivery canal sometimes-would you tell us the indications of the Scandinavian group for catheterization in the immediate newborn period?', one is indeed being kept up with the times. But that was two years ago and already some of the questions then debated have since been answered. This beautifully printed and well-illustrated stiff paperbacked volume is, and will for a few years yet remain, an invaluable companion to a full-scale textbook on congenital heart disease.

1,394 citations

Journal Article
TL;DR: The highest amount of weekly exercise, with minimal weight change, had widespread beneficial effects on the lipoprotein profile, seen most clearly with the high amount of high-intensity exercise.
Abstract: BACKGROUND Increased physical activity is related to reduced risk of cardiovascular disease, possibly because it leads to improvement in the lipoprotein profile. However, the amount of exercise training required for optimal benefit is unknown. In a prospective, randomized study, we investigated the effects of the amount and intensity of exercise on lipoproteins. METHODS A total of 111 sedentary, overweight men and women with mild-to-moderate dyslipidemia were randomly assigned to participate for six months in a control group or for approximately eight months in one of three exercise groups: high-amount-high-intensity exercise, the caloric equivalent of jogging 20 mi (32.0 km) per week at 65 to 80 percent of peak oxygen consumption; low-amount-high-intensity exercise, the equivalent of jogging 12 mi (19.2 km) per week at 65 to 80 percent of peak oxygen consumption; or low-amount-moderate-intensity exercise, the equivalent of walking 12 mi per week at 40 to 55 percent of peak oxygen consumption. Subjects were encouraged to maintain their base-line body weight. The 84 subjects who complied with these guidelines served as the basis for the main analysis. Detailed lipoprotein profiling was performed by nuclear magnetic resonance spectroscopy with verification by measurement of cholesterol in lipoprotein subfractions. RESULTS There was a beneficial effect of exercise on a variety of lipid and lipoprotein variables, seen most clearly with the high amount of high-intensity exercise. The high amount of exercise resulted in greater improvements than did the lower amounts of exercise (in 10 of 11 lipoprotein variables) and was always superior to the control condition (11 of 11 variables). Both lower-amount exercise groups always had better responses than the control group (22 of 22 comparisons). CONCLUSIONS The highest amount of weekly exercise, with minimal weight change, had widespread beneficial effects on the lipoprotein profile. The improvements were related to the amount of activity and not to the intensity of exercise or improvement in fitness.

1,267 citations

Journal ArticleDOI
TL;DR: The reciprocal fundamental physiological effects linking sleep and exercise are described in order to improve the pertinent use of exercise in sleep medicine and prevent sleep disorders in sportsmen.

467 citations