scispace - formally typeset
Search or ask a question
Author

Maria-Melanie Russew

Bio: Maria-Melanie Russew is an academic researcher from Humboldt University of Berlin. The author has contributed to research in topics: Engineering & Nanotechnology. The author has an hindex of 1, co-authored 1 publications receiving 750 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Moving from supramolecular systems in solution to surfaces and finally to bulk materials, important design concepts are discussed, emphasizing both the challenges as well as the great promise of such truly advanced materials.
Abstract: Small organic molecules, capable of undergoing efficient and reversible photochemical reactions to switch them between (at least) two (meta)stable isomers associated with markedly different properties, continue to impact the materials world. Such photoswitches are being implemented in a variety of materials for applications ranging from optical devices to "smart" polymers. All approaches exploit the photoswitching molecular entities as gates, which translate an incoming light stimulus to trigger macroscopic property changes of the materials. In this progress report, the most promising recent examples in this field are highlighted and put in perspective. Moving from supramolecular systems in solution to surfaces and finally to bulk materials, important design concepts are discussed, emphasizing both the challenges as well as the great promise of such truly advanced materials.

836 citations

Proceedings ArticleDOI
07 Dec 2022
TL;DR: In this article , the availability of polymers as optical materials plays a crucial role for easy, cost-efficient, and reliable wafer-based manufacturing, especially for micro-optical elements and waveguides.
Abstract: The availability of polymers as optical materials plays a crucial role for easy, cost-efficient, and reliable wafer-based manufacturing. In this context, UV -curable Hybrid Polymers have gained industrial importance especially in the field of micro-optical elements and waveguides in the past years [1], [2] (Fig 1).
Proceedings ArticleDOI
01 May 2023
TL;DR: In this paper , material innovations have a significant part in enhancing micro- and nanofabrication by outperforming generic photoresists through cross-functionality as it is increasingly required in ever growing pattern complexity (e.g., advanced mix-and-match methods) or when additional material features are set by the final application.
Abstract: The ongoing advancement of lithographic manufacturing in micro- and nanopatterning rely on the commercial availability of innovative photoresists, polymers and photopolymers as well as complementary process chemicals: This allows to enhance current micro- and nanofabrication technologies by increasing the overall pattern complexity or general process simplicity. In this contribution, we demonstrate that material innovations have a significant part in enhancing micro- and nanofabrication by outperforming generic photoresists through cross-functionality as it is increasingly required in ever growing pattern complexity (e.g. advanced mix-and-match methods) or when additional material features are set by the final application.
Proceedings ArticleDOI
01 May 2023
TL;DR: In this paper , a two-stage curing process with a high intensity, low dose patterning step and a high dose flood exposure after development is proposed to realize previously unattainable resolutions limits for Hybrid Polymers of 6μm L/S and aspect ratios of more than 3.
Abstract: Hybrid Polymers are a material class established in the industry for manufacturing of high-performance optical components, mainly patterned by (nano)imprint processes. Recently, the application range of Hybrid Polymers has been extended into bonding and passivation. In this context, patterning by classical UV-lithography has come into focus as an alternative patterning method to (nano)imprinting. By applying a two-stage curing process with a high intensity, low dose patterning step and a high dose flood exposure after development, it is possible to realize previously unattainable resolutions limits for Hybrid Polymers of 6μm L/S and aspect ratios of more than 3.

Cited by
More filters
Journal ArticleDOI
TL;DR: The latest generations of sophisticated synthetic molecular machine systems in which the controlled motion of subcomponents is used to perform complex tasks are discussed, paving the way to applications and the realization of a new era of “molecular nanotechnology”.
Abstract: The widespread use of molecular machines in biology has long suggested that great rewards could come from bridging the gap between synthetic molecular systems and the machines of the macroscopic world. In the last two decades, it has proved possible to design synthetic molecular systems with architectures where triggered large amplitude positional changes of submolecular components occur. Perhaps the best way to appreciate the technological potential of controlled molecular-level motion is to recognize that nanomotors and molecular-level machines lie at the heart of every significant biological process. Over billions of years of evolution, nature has not repeatedly chosen this solution for performing complex tasks without good reason. When mankind learns how to build artificial structures that can control and exploit molecular level motion and interface their effects directly with other molecular-level substructures and the outside world, it will potentially impact on every aspect of functional molecule and materials design. An improved understanding of physics and biology will surely follow. The first steps on the long path to the invention of artificial molecular machines were arguably taken in 1827 when the Scottish botanist Robert Brown observed the haphazard motion of tiny particles under his microscope.1,2 The explanation for Brownian motion, that it is caused by bombardment of the particles by molecules as a consequence of the kinetic theory of matter, was later provided by Einstein, followed by experimental verification by Perrin.3,4 The random thermal motion of molecules and its implications for the laws of thermodynamics in turn inspired Gedankenexperiments (“thought experiments”) that explored the interplay (and apparent paradoxes) of Brownian motion and the Second Law of Thermodynamics. Richard Feynman’s famous 1959 lecture “There’s plenty of room at the bottom” outlined some of the promise that manmade molecular machines might hold.5,6 However, Feynman’s talk came at a time before chemists had the necessary synthetic and analytical tools to make molecular machines. While interest among synthetic chemists began to grow in the 1970s and 1980s, progress accelerated in the 1990s, particularly with the invention of methods to make mechanically interlocked molecular systems (catenanes and rotaxanes) and control and switch the relative positions of their components.7−24 Here, we review triggered large-amplitude motions in molecular structures and the changes in properties these can produce. We concentrate on conformational and configurational changes in wholly covalently bonded molecules and on catenanes and rotaxanes in which switching is brought about by various stimuli (light, electrochemistry, pH, heat, solvent polarity, cation or anion binding, allosteric effects, temperature, reversible covalent bond formation, etc.). Finally, we discuss the latest generations of sophisticated synthetic molecular machine systems in which the controlled motion of subcomponents is used to perform complex tasks, paving the way to applications and the realization of a new era of “molecular nanotechnology”. 1.1. The Language Used To Describe Molecular Machines Terminology needs to be properly and appropriately defined and these meanings used consistently to effectively convey scientific concepts. Nowhere is the need for accurate scientific language more apparent than in the field of molecular machines. Much of the terminology used to describe molecular-level machines has its origins in observations made by biologists and physicists, and their findings and descriptions have often been misinterpreted and misunderstood by chemists. In 2007 we formalized definitions of some common terms used in the field (e.g., “machine”, “switch”, “motor”, “ratchet”, etc.) so that chemists could use them in a manner consistent with the meanings understood by biologists and physicists who study molecular-level machines.14 The word “machine” implies a mechanical movement that accomplishes a useful task. This Review concentrates on systems where a stimulus triggers the controlled, relatively large amplitude (or directional) motion of one molecular or submolecular component relative to another that can potentially result in a net task being performed. Molecular machines can be further categorized into various classes such as “motors” and “switches” whose behavior differs significantly.14 For example, in a rotaxane-based “switch”, the change in position of a macrocycle on the thread of the rotaxane influences the system only as a function of state. Returning the components of a molecular switch to their original position undoes any work done, and so a switch cannot be used repetitively and progressively to do work. A “motor”, on the other hand, influences a system as a function of trajectory, meaning that when the components of a molecular motor return to their original positions, for example, after a 360° directional rotation, any work that has been done is not undone unless the motor is subsequently rotated by 360° in the reverse direction. This difference in behavior is significant; no “switch-based” molecular machine can be used to progressively perform work in the way that biological motors can, such as those from the kinesin, myosin, and dynein superfamilies, unless the switch is part of a larger ratchet mechanism.14

1,434 citations

Journal ArticleDOI
TL;DR: This review discusses the synthesis, switching conditions, and use of dynamic materials in which spiropyran has been attached to the surfaces of polymers, biomacromolecules, inorganic nanoparticles, as well as solid surfaces.
Abstract: In the past few years, spiropyran has emerged as the molecule-of-choice for the construction of novel dynamic materials. This unique molecular switch undergoes structural isomerisation in response to a variety of orthogonal stimuli, e.g. light, temperature, metal ions, redox potential, and mechanical stress. Incorporation of this switch onto macromolecular supports or inorganic scaffolds allows for the creation of robust dynamic materials. This review discusses the synthesis, switching conditions, and use of dynamic materials in which spiropyran has been attached to the surfaces of polymers, biomacromolecules, inorganic nanoparticles, as well as solid surfaces. The resulting materials show fascinating properties whereby the state of the switch intimately affects a multitude of useful properties of the support. The utility of the spiropyran switch will undoubtedly endow these materials with far-reaching applications in the near future.

1,384 citations

Journal ArticleDOI
TL;DR: This critical review summarizes key properties of azobenzene that enable its use as a photoswitch in biological systems and describes strategies for using azobensene photoswitches to drive functional changes in peptides, proteins, nucleic acids, lipids, and carbohydrates.
Abstract: The photoisomerization of azobenzene has been known for almost 75 years but only recently has this process been widely applied to biological systems. The central challenge of how to productively couple the isomerization process to a large functional change in a biomolecule has been met in a number of instances and it appears that effective photocontrol of a large variety of biomolecules may be possible. This critical review summarizes key properties of azobenzene that enable its use as a photoswitch in biological systems and describes strategies for using azobenzene photoswitches to drive functional changes in peptides, proteins, nucleic acids, lipids, and carbohydrates (192 references).

1,371 citations

Journal ArticleDOI
19 Apr 2013-Polymer
TL;DR: An up-to-date review on shape memory polymer composites with potential applications in biomedical devices, aerospace, textiles, civil engineering, bionics engineering, energy, electronic engineering, and household products is presented.

981 citations