scispace - formally typeset
Search or ask a question
Author

Maria Pia Sormani

Bio: Maria Pia Sormani is an academic researcher from University of Genoa. The author has contributed to research in topics: Multiple sclerosis & Expanded Disability Status Scale. The author has an hindex of 75, co-authored 365 publications receiving 18367 citations. Previous affiliations of Maria Pia Sormani include Vita-Salute San Raffaele University & National Cancer Research Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: Refined descriptors that include consideration of disease activity (based on clinical relapse rate and imaging findings) and disease progression are proposed and strategies for future research to better define phenotypes are outlined.
Abstract: Accurate clinical course descriptions (phenotypes) of multiple sclerosis (MS) are important for communication, prognostication, design and recruitment of clinical trials, and treatment decision-making. Standardized descriptions published in 1996 based on a survey of international MS experts provided purely clinical phenotypes based on data and consensus at that time, but imaging and biological correlates were lacking. Increased understanding of MS and its pathology, coupled with general concern that the original descriptors may not adequately reflect more recently identified clinical aspects of the disease, prompted a re-examination of MS disease phenotypes by the International Advisory Committee on Clinical Trials of MS. While imaging and biological markers that might provide objective criteria for separating clinical phenotypes are lacking, we propose refined descriptors that include consideration of disease activity (based on clinical relapse rate and imaging findings) and disease progression. Strategies for future research to better define phenotypes are also outlined.

2,180 citations

Journal ArticleDOI
TL;DR: How technological advances have enabled the detection of neurofilament proteins in the blood is considered, and how these proteins consequently have the potential to be easily measured biomarkers of neuroaxonal injury in various neurological conditions are discussed.
Abstract: Neuroaxonal damage is the pathological substrate of permanent disability in various neurological disorders. Reliable quantification and longitudinal follow-up of such damage are important for assessing disease activity, monitoring treatment responses, facilitating treatment development and determining prognosis. The neurofilament proteins have promise in this context because their levels rise upon neuroaxonal damage not only in the cerebrospinal fluid (CSF) but also in blood, and they indicate neuroaxonal injury independent of causal pathways. First-generation (immunoblot) and second-generation (enzyme-linked immunosorbent assay) neurofilament assays had limited sensitivity. Third-generation (electrochemiluminescence) and particularly fourth-generation (single-molecule array) assays enable the reliable measurement of neurofilaments throughout the range of concentrations found in blood samples. This technological advancement has paved the way to investigate neurofilaments in a range of neurological disorders. Here, we review what is known about the structure and function of neurofilaments, discuss analytical aspects and knowledge of age-dependent normal ranges of neurofilaments and provide a comprehensive overview of studies on neurofilament light chain as a marker of axonal injury in different neurological disorders, including multiple sclerosis, neurodegenerative dementia, stroke, traumatic brain injury, amyotrophic lateral sclerosis and Parkinson disease. We also consider work needed to explore the value of this axonal damage marker in managing neurological diseases in daily practice.

1,038 citations

Journal ArticleDOI
TL;DR: Recommendations on how and when to use MRI for disease monitoring are presented, and some promising MRI approaches that may be introduced into clinical practice in the near future are discussed.
Abstract: The role of MRI in the assessment of multiple sclerosis (MS) goes far beyond the diagnostic process. MRI techniques can be used as regular monitoring to help stage patients with MS and measure disease progression. MRI can also be used to measure lesion burden, thus providing useful information for the prediction of long-term disability. With the introduction of a new generation of immunomodulatory and/or immunosuppressive drugs for the treatment of MS, MRI also makes an important contribution to the monitoring of treatment, and can be used to determine baseline tissue damage and detect subsequent repair. This use of MRI can help predict treatment response and assess the efficacy and safety of new therapies. In the second part of the MAGNIMS (Magnetic Resonance Imaging in MS) network's guidelines on the use of MRI in MS, we focus on the implementation of this technique in prognostic and monitoring tasks. We present recommendations on how and when to use MRI for disease monitoring, and discuss some promising MRI approaches that may be introduced into clinical practice in the near future.

411 citations

Journal ArticleDOI
TL;DR: An evidence-based clinical practice guideline for the pharmacological treatment of people with MS, which takes into account all disease-modifying drugs approved by the European Medicine Agency at the time of publication.
Abstract: Background:Multiple sclerosis (MS) is a complex disease with new drugs becoming available in the past years There is a need for a reference tool compiling current data to aid professionals in trea

374 citations

Journal ArticleDOI
TL;DR: Recommendations are intended to help radiologists and neurologists standardize and optimize the use of MRI in clinical practice for the diagnosis of MS.
Abstract: The clinical use of MRI in patients with multiple sclerosis (MS) has advanced markedly over the past few years. Technical improvements and continuously emerging data from clinical trials and observational studies have contributed to the enhanced performance of this tool for achieving a prompt diagnosis in patients with MS. The aim of this article is to provide guidelines for the implementation of MRI of the brain and spinal cord in the diagnosis of patients who are suspected of having MS. These guidelines are based on an extensive review of the recent literature, as well as on the personal experience of the members of the MAGNIMS (Magnetic Resonance Imaging in MS) network. We address the indications, timing, coverage, reporting and interpretation of MRI studies in patients with suspected MS. Our recommendations are intended to help radiologists and neurologists standardize and optimize the use of MRI in clinical practice for the diagnosis of MS.

352 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: These revisions simplify the McDonald Criteria, preserve their diagnostic sensitivity and specificity, address their applicability across populations, and may allow earlier diagnosis and more uniform and widespread use.
Abstract: New evidence and consensus has led to further revision of the McDonald Criteria for diagnosis of multiple sclerosis. The use of imaging for demonstration of dissemination of central nervous system lesions in space and time has been simplified, and in some circumstances dissemination in space and time can be established by a single scan. These revisions simplify the Criteria, preserve their diagnostic sensitivity and specificity, address their applicability across populations, and may allow earlier diagnosis and more uniform and widespread use.

8,883 citations

Journal ArticleDOI
TL;DR: TBSS aims to improve the sensitivity, objectivity and interpretability of analysis of multi-subject diffusion imaging studies by solving the question of how to align FA images from multiple subjects in a way that allows for valid conclusions to be drawn from the subsequent voxelwise analysis.

5,959 citations

01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Journal ArticleDOI
TL;DR: The 2017 McDonald criteria continue to apply primarily to patients experiencing a typical clinically isolated syndrome, define what is needed to fulfil dissemination in time and space of lesions in the CNS, and stress the need for no better explanation for the presentation.
Abstract: The 2010 McDonald criteria for the diagnosis of multiple sclerosis are widely used in research and clinical practice. Scientific advances in the past 7 years suggest that they might no longer provide the most up-to-date guidance for clinicians and researchers. The International Panel on Diagnosis of Multiple Sclerosis reviewed the 2010 McDonald criteria and recommended revisions. The 2017 McDonald criteria continue to apply primarily to patients experiencing a typical clinically isolated syndrome, define what is needed to fulfil dissemination in time and space of lesions in the CNS, and stress the need for no better explanation for the presentation. The following changes were made: in patients with a typical clinically isolated syndrome and clinical or MRI demonstration of dissemination in space, the presence of CSF-specific oligoclonal bands allows a diagnosis of multiple sclerosis; symptomatic lesions can be used to demonstrate dissemination in space or time in patients with supratentorial, infratentorial, or spinal cord syndrome; and cortical lesions can be used to demonstrate dissemination in space. Research to further refine the criteria should focus on optic nerve involvement, validation in diverse populations, and incorporation of advanced imaging, neurophysiological, and body fluid markers.

3,945 citations