scispace - formally typeset
Search or ask a question
Author

Maria Simonetta Faussone Pellegrini

Bio: Maria Simonetta Faussone Pellegrini is an academic researcher from University of Florence. The author has contributed to research in topics: Interstitial cell of Cajal & Biopsy. The author has an hindex of 3, co-authored 4 publications receiving 364 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that on full-thickness biopsy specimens, cellular abnormalities are found in the majority of patients with gastroparesis, and an increase in CD45 and CD68 immunoreactivity is found.

343 citations

Journal ArticleDOI
15 Apr 2014-PLOS ONE
TL;DR: The KIT gene is investigated as a candidate for the English spotting locus in Checkered Giant rabbits and the abnormalities affecting enteric neurons and c-kit positive interstitial cells of Cajal (ICC) in the megacolon of En/En rabbits are characterized.
Abstract: The English spotting coat color locus in rabbits, also known as Dominant white spotting locus, is determined by an incompletely dominant allele (En). Rabbits homozygous for the recessive wild-type allele (en/en) are self-colored, heterozygous En/en rabbits are normally spotted, and homozygous En/En animals are almost completely white. Compared to vital en/en and En/en rabbits, En/En animals are subvital because of a dilated (“mega”) cecum and ascending colon. In this study, we investigated the role of the KIT gene as a candidate for the English spotting locus in Checkered Giant rabbits and characterized the abnormalities affecting enteric neurons and c-kit positive interstitial cells of Cajal (ICC) in the megacolon of En/En rabbits. Twenty-one litters were obtained by crossing three Checkered Giant bucks (En/en) with nine Checkered Giant (En/en) and two en/en does, producing a total of 138 F1 and backcrossed rabbits. Resequencing all coding exons and portions of non-coding regions of the KIT gene in 28 rabbits of different breeds identified 98 polymorphisms. A single nucleotide polymorphism genotyped in all F1 families showed complete cosegregation with the English spotting coat color phenotype (θ = 0.00 LOD = 75.56). KIT gene expression in cecum and colon specimens of En/En (pathological) rabbits was 5–10% of that of en/en (control) rabbits. En/En rabbits showed reduced and altered c-kit immunolabelled ICC compared to en/en controls. Morphometric data on whole mounts of the ascending colon showed a significant decrease of HuC/D (P<0.05) and substance P (P<0.01) immunoreactive neurons in En/En vs. en/en. Electron microscopy analysis showed neuronal and ICC abnormalities in En/En tissues. The En/En rabbit model shows neuro-ICC changes reminiscent of the human non-aganglionic megacolon. This rabbit model may provide a better understanding of the molecular abnormalities underlying conditions associated with non-aganglionic megacolon.

37 citations

Journal ArticleDOI
TL;DR: In neonates, the special layer, ICC and PMP are recognizable, but are made up of poorly differentiated elements, whereas in suckling animals, these three structures develop but become almost fully differentiated only at the end of the weaning period, whereas the other components of the muscular coat are already developed.
Abstract: The morphogenesis of the special layer and the interstitial cells of Cajal (ICC) related to the plexus muscularis profundus (PMP) of mouse intestinal muscle coat has been studied in foetuses at term, neonates not yet fed, suckling animals, weaning animals and adult animals. In foetuses at term, the special layer is absent, but presumed myoblasts of this layer are recognized in the tela submucosa facing the developing circular layer. The ICC, too, are not differentiated and presumed ICC-blasts are tentatively identified in submucosal cells related to nerve fibers. These nerve fibers are considered to belong to the developing PMP. In neonates, the special layer, ICC and PMP are recognizable, but are made up of poorly differentiated elements. In suckling animals, these three structures develop but become almost fully differentiated only at the end of the weaning period, whereas the other components of the muscular coat are already developed.

34 citations


Cited by
More filters
Journal Article
TL;DR: The comparison of related genomes has emerged as a powerful lens for genome interpretation as mentioned in this paper, which reveals a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons.
Abstract: The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering ∼4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for ∼60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease.

926 citations

Journal ArticleDOI
TL;DR: Current approved treatment options, including metoclopramide and gastric electrical stimulation (GES), do not adequately address clinical need and attention should be given to the development of new effective therapies for symptomatic control.

854 citations

Journal ArticleDOI
TL;DR: Physiological analysis indicates that the mechanisms required for the autonomic pacing of contraction in an isolated gut segment are defective in the anti-c-kit mAb-treated mice, W/Wv mice and even W/+ mice.
Abstract: A discovery that the protooncogene encoding the receptor tyrosine kinase, c-kit, is allelic with the Dominant white spotting (W) locus establishes that c-kit plays a functional role in the development of three cell lineages, melanocyte, germ cell, and hematopoietic cell which are defective in W mutant mice. Recent analyses of c-kit expression in various tissues of mouse, however, have demonstrated that c-kit is expressed in more diverse tissues which are phenotypically normal in W mutant mice. Thus, whether or not c-kit expressed outside the three known cell lineages plays a functional role is one of the important questions needing answering in order to fully elucidate the role of c-kit in the development of the mouse. Here, we report that some of the cells in smooth muscle layers of developing intestine express c-kit. Blockade of its function for a few days postnatally by an antagonistic anti-c-kit monoclonal antibody (mAb) results in a severe anomaly of gut movement, which in BALB/c mice produces a lethal paralytic ileus. Physiological analysis indicates that the mechanisms required for the autonomic pacing of contraction in an isolated gut segment are defective in the anti-c-kit mAb-treated mice, W/Wv mice and even W/+ mice. These findings suggest that c-kit plays a crucial role in the development of a component of the pacemaker system that is required for the generation of autonomic gut motility.

705 citations

Journal ArticleDOI
TL;DR: Morphological experiments showed that c-kit-positive cells are ICs, and physiological evidence reinforced the concept that ICs are involved in generation of rhythmicity and translation of neural inputs in gastrointestinal smooth muscles.
Abstract: In vivo injection of a neutralizing, monoclonal antibody (ACK2) to the receptor tyrosine kinase (c-kit) disrupts the normal motility patterns of the mouse small intestine. Immunohistochemical studies showed that cells expressing c-kit-like immunoreactivity (c-kit-LI) decreased in numbers in response to ACK2, but the identity of these cells is unknown. We investigated the identity and development of the cells that express c-kit-LI in the mouse small intestine and colon. Cells in the region of the myenteric plexus and deep muscular plexus of the small intestine and in the subserosa, in the myenteric plexus region, within the circular and longitudinal muscle layers, and along the submucosal surface of the circular muscle in the colon were labeled with ACK2. The distribution of cells that express c-kit-LI was the same as that of interstitial cells (ICs). In whole-mount preparations cells with c-kit-LI were interconnected, forming a network similar to the network formed by cells that stained with methylene blue, which has been used as a marker for ICs in the mouse gastrointestinal tract. Immunocytochemistry verified that ICs were labeled with ACK2. Multiple injections of animals with ACK2 between days 0 and 8 post partum (pp) caused a dramatic reduction in the number of ICs compared to control animals. From an ultrastructural point of view, the proliferation and development appeared to be suppressed in some classes of ICs, while others displayed an altered course of development. Functional studies showed that the decrease in ICs was accompanied by a loss of electrical rhythmicity in the small intestine and reduced neural responses in the small bowel and colon. Morphological experiments showed that c-kit-positive cells are ICs, and physiological evidence reinforced the concept that ICs are involved in generation of rhythmicity and translation of neural inputs in gastrointestinal smooth muscles. Controlling the development of ICs provides a powerful new tool for the investigation of the physiological role of these cells.

403 citations

Journal ArticleDOI
TL;DR: Structural, functional, and molecular features of interstitial cells are described and their contributions in determining the behaviors of smooth muscle tissues are discussed.
Abstract: Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα+ cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα+ cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues.

331 citations