scispace - formally typeset
Search or ask a question
Author

Maria Stamenova

Bio: Maria Stamenova is an academic researcher from Trinity College, Dublin. The author has contributed to research in topics: Magnetization & Spin-½. The author has an hindex of 9, co-authored 25 publications receiving 322 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The demonstrated rotation of spin polarization of hot electrons upon interaction with noncollinear magnetization at Au/Fe interfaces holds high potential for future spintronic devices.
Abstract: Using the sensitivity of optical second harmonic generation to currents, we demonstrate the generation of 250-fs long spin current pulses in $\mathrm{Fe}/\mathrm{Au}/\mathrm{Fe}/\mathrm{MgO}(001)$ spin valves. The temporal profile of these pulses indicates ballistic transport of hot electrons across a sub-100 nm Au layer. The pulse duration is primarily determined by the thermalization time of laser-excited hot carriers in Fe. Considering the calculated spin-dependent $\mathrm{Fe}/\mathrm{Au}$ interface transmittance we conclude that a nonthermal spin-dependent Seebeck effect is responsible for the generation of ultrashort spin current pulses. The demonstrated rotation of spin polarization of hot electrons upon interaction with noncollinear magnetization at $\mathrm{Au}/\mathrm{Fe}$ interfaces holds high potential for future spintronic devices.

92 citations

Journal ArticleDOI
TL;DR: A dynamical method for simulating steady-state conduction in atomic and molecular wires is presented and quantitatively reproduces the static results and provides information on the stability of the different solutions.
Abstract: A dynamical method for simulating steady-state conduction in atomic and molecular wires is presented which is both computationally and conceptually simple. The method is tested by calculating the current-voltage spectrum of a simple diatomic molecular junction, for which the static Landauer approach produces multiple steady-state solutions. The dynamical method quantitatively reproduces the static results and provides information on the stability of the different solutions.

89 citations

Journal ArticleDOI
TL;DR: In this paper, a multiscale approach combining ab initio calculations of spin-transfer torque with large-scale time-dependent simulations using atomistic spin dynamics is proposed to develop efficient magnetic tunnel junctions with low write currents for nonvolatile memory devices.
Abstract: There exists a significant challenge in developing efficient magnetic tunnel junctions with low write currents for nonvolatile memory devices. With the aim of analyzing potential materials for efficient current-operated magnetic junctions, we have developed a multi-scale methodology combining ab initio calculations of spin-transfer torque with large-scale time-dependent simulations using atomistic spin dynamics. In this work we introduce our multiscale approach, including a discussion on a number of possible schemes for mapping the ab initio spin torques into the spin dynamics. We demonstrate this methodology on a prototype Co/MgO/Co/Cu tunnel junction showing that the spin torques are primarily acting at the interface between the Co free layer and MgO. Using spin dynamics we then calculate the reversal switching times for the free layer and the critical voltages and currents required for such switching. Our work provides an efficient, accurate, and versatile framework for designing novel current-operated magnetic devices, where all the materials details are taken into account.

34 citations

Journal ArticleDOI
TL;DR: In this paper, an all-antiferromagnetic tunnel junction with current perpendicular to the plane geometry can be used as an efficient spintronic device with potential high-frequency operation.
Abstract: We demonstrate that an all-antiferromagnetic tunnel junction with current perpendicular to the plane geometry can be used as an efficient spintronic device with potential high-frequency operation. By using state-of-the-art density functional theory combined with quantum transport, we show that the N\'eel vector of the electrodes can be manipulated by spin-transfer torque. This is staggered over the two different magnetic sublattices and can generate dynamics and switching. At the same time the different magnetization states of the junction can be read by standard tunneling magnetoresistance. Calculations are performed for $\mathrm{CuMnAs}|\mathrm{GaP}|\mathrm{CuMnAs}$ junctions with different surface terminations between the antiferromagnetic CuMnAs electrodes and the insulating GaP spacer. We find that the torque remains staggered regardless of the termination, while the magnetoresistance depends on the microscopic details of the interface.

26 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of spin-orbit interaction on the onset of the demagnetization process is investigated, and it is shown that the initial rate of spin loss, coherent with the laser field, is proportional to the square of the ionic spinorbit coupling strength.
Abstract: The ultrafast demagnetization of small iron clusters initiated by an intense optical excitation is studied from the time-dependent spin density functional theory (TDSDFT). In particular we investigate the effect of the spin-orbit interaction on the onset of the demagnetization process. It is found that demagnetization occurs locally, in the vicinity of the atomic sites, and the initial rate of spin loss, coherent with the laser field, is proportional to the square of the ionic spin-orbit coupling strength $\ensuremath{\lambda}$. A simplified quantum spin model comprising spin-orbit interaction and a time-dependent magnetic field is found to be the minimal model able to reproduce our ab initio results. The model predicts the ${\ensuremath{\lambda}}^{2}$ dependence of the onset rate of demagnetization when it is solved either analytically for the small $t$ regime, or numerically integrated in the time domain. Our findings are supported by additional TDSDFT simulations of clusters made of Co and Ni.

22 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces, identifying the most exciting new scientific results and pointing to promising future research directions.
Abstract: This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties are affected by interfaces, then turns to a discussion of charge and spin transport through and near interfaces and how these can be used to control the properties of the magnetic layer. Important concepts include spin accumulation, spin currents, spin transfer torque, and spin pumping. An overview is provided to the current state of knowledge and existing review literature on interfacial effects such as exchange bias, exchange spring magnets, spin Hall effect, oxide heterostructures, and topological insulators. The article highlights recent discoveries of interface-induced magnetism and non-collinear spin textures, non-linear dynamics including spin torque transfer and magnetization reversal induced by interfaces, and interfacial effects in ultrafast magnetization processes.

758 citations

Journal Article
TL;DR: Electrical writing is combined in solid-state memory with electrical readout and the stored magnetic state is insensitive to and produces no external magnetic field perturbations, which illustrates the unique merits of antiferromagnets for spintronics.
Abstract: Manipulating a stubborn magnet Spintronics is an alternative to conventional electronics, based on using the electron's spin rather than its charge. Spintronic devices, such as magnetic memory, have traditionally used ferromagnetic materials to encode the 1's and 0's of the binary code. A weakness of this approach—that strong magnetic fields can erase the encoded information—could be avoided by using antiferromagnets instead of ferromagnets. But manipulating the magnetic ordering of antiferromagnets is tricky. Now, Wadley et al. have found a way (see the Perspective by Marrows). Running currents along specific directions in the thin films of the antiferromagnetic compound CuMnAs reoriented the magnetic domains in the material. Science, this issue p. 587; see also p. 558 Transport and optical measurements are used to demonstrate the switching of domains in the antiferromagnetic compound CuMnAs. [Also see Perspective by Marrows] Antiferromagnets are hard to control by external magnetic fields because of the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization. However, relativistic quantum mechanics allows for generating current-induced internal fields whose sign alternates with the periodicity of the antiferromagnetic lattice. Using these fields, which couple strongly to the antiferromagnetic order, we demonstrate room-temperature electrical switching between stable configurations in antiferromagnetic CuMnAs thin-film devices by applied current with magnitudes of order 106 ampere per square centimeter. Electrical writing is combined in our solid-state memory with electrical readout and the stored magnetic state is insensitive to and produces no external magnetic field perturbations, which illustrates the unique merits of antiferromagnets for spintronics.

756 citations

Journal ArticleDOI
TL;DR: The SMEAGOL algorithm as discussed by the authors constructs surface Green's functions describing the currentvoltage probes, which can be used to evaluate the I-V characteristics of atomic junctions, which integrates the nonequilibrium Green's function method with density functional theory.
Abstract: Ab initio computational methods for electronic transport in nanoscaled systems are an invaluable tool for the design of quantum devices. We have developed a flexible and efficient algorithm for evaluating I-V characteristics of atomic junctions, which integrates the nonequilibrium Green’s function method with density functional theory. This is currently implemented in the package SMEAGOL. The heart of SMEAGOL is our scheme for constructing the surface Green’s functions describing the current-voltage probes. It consists of a direct summation of both open and closed scattering channels together with a regularization procedure of the Hamiltonian and provides great improvements over standard recursive methods. In particular it allows us to tackle material systems with complicated electronic structures, such as magnetic transition metals. Here we present a detailed description of SMEAGOL together with an extensive range of applications relevant for the two burgeoning fields of spin and molecular electronics.

564 citations

Journal ArticleDOI
TL;DR: Chemistry can contribute to designing robust spin systems based, in particular, on mononuclear lanthanoid complexes, the elementary unit of future quantum computers.
Abstract: Spins in solids or in molecules possess discrete energy levels, and the associated quantum states can be tuned and coherently manipulated by means of external electromagnetic fields. Spins therefore provide one of the simplest platforms to encode a quantum bit (qubit), the elementary unit of future quantum computers. Performing any useful computation demands much more than realizing a robust qubit-one also needs a large number of qubits and a reliable manner with which to integrate them into a complex circuitry that can store and process information and implement quantum algorithms. This 'scalability' is arguably one of the challenges for which a chemistry-based bottom-up approach is best-suited. Molecules, being much more versatile than atoms, and yet microscopic, are the quantum objects with the highest capacity to form non-trivial ordered states at the nanoscale and to be replicated in large numbers using chemical tools.

468 citations

Journal Article
TL;DR: Ferroelectricity in BaTiO3 crystals is used to tune the sharp metamagnetic transition temperature of epitaxially grown FeRh films and electrically drive a transition between antiferromagnetic and ferromagnetic order with only a few volts, just above room temperature, correspond to a magnetoelectric coupling larger than previous reports by at least one order of magnitude.
Abstract: Controlling magnetism by means of electric fields is a key issue for the future development of low-power spintronics1. Progress has been made in the electrical control of magnetic anisotropy2, domain structure3,4, spin polarization5,6 or critical temperatures7,8. However, the ability to turn on and o robust ferromagnetism at room temperature and above has remained elusive. Here we use ferroelectricity in BaTiO3 crystals to tune the sharp metamagnetic transition temperature of epitaxially grown FeRh films and electrically drive a transition between antiferromagnetic and ferromagnetic order with only a few volts, just above room temperature. The detailed analysis of the data in the light of first-principles calculations indicate that the phenomenon is mediated by both strain and field e ects from the BaTiO3. Our results correspond to a magnetoelectric coupling larger than previous reports by at least one order of magnitude and open new perspectives for the use of ferroelectrics in magnetic storage and spintronics.

371 citations