scispace - formally typeset
Search or ask a question
Author

Mariadriana Creatore

Other affiliations: University of Bari
Bio: Mariadriana Creatore is an academic researcher from Eindhoven University of Technology. The author has contributed to research in topics: Atomic layer deposition & Thin film. The author has an hindex of 35, co-authored 175 publications receiving 4670 citations. Previous affiliations of Mariadriana Creatore include University of Bari.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors proposed a hybrid organometal halide perovskites for photovoltaic applications, which can achieve high power conversion efficiency (PCE) and low temperature.
Abstract: Recently, research on hybrid organometal halide perovskites for photovoltaic applications has delivered impressive growth in power conversion effi ciencies (PCEs) with a current certifi ed record of 17.9% and growing. [ 1–6 ] Key advantages of perovskites devices, together with high PCEs, are represented by the ease of the solution processing steps and their low temperature (<140 °C). [ 7,8 ] These values enable the fabrication on plastic substrates, [ 9 ] compatible with a continuous roll-toroll manufacturing which can potentially contribute to dramatically lower the production costs of large area modules. [ 10 ] Moreover, fl exible devices can also be conformed to curved surfaces to enhance power conversion densities. [ 11,12 ]

568 citations

Journal ArticleDOI
TL;DR: In this article, thin Al2O3 films of different thicknesses (10−40nm) were deposited by plasma-assisted atomic layer deposition on substrates of poly(2,6-ethylenenenaphthalate) (PEN), and the water vapor transmission rate (WVTR) values were measured by means of the calcium test.
Abstract: Thin Al2O3 films of different thicknesses (10–40nm) were deposited by plasma-assisted atomic layer deposition on substrates of poly(2,6-ethylenenaphthalate) (PEN), and the water vapor transmission rate (WVTR) values were measured by means of the calcium test. The permeation barrier properties improved with decreasing substrate temperature and a good WVTR of 5×10−3gm−2day−1 (WVTRPEN=0.5gm−2day−1) was measured for a 20nm thick Al2O3 film deposited at room temperature using short purging times. Such ultrathin, low-temperature deposited, high-quality moisture permeation barriers are an essential requirement for the implementation of polymeric substrates in flexible electronic and display applications.

257 citations

Journal ArticleDOI
TL;DR: In this paper, an ultra-thin ALD Al2O3 film was used to conformally deposit the material on top of the perovskite absorber to provide a tunnel contact.
Abstract: Perovskite materials are drawing tremendous interest for photovoltaic solar cell applications, but are hampered by intrinsic material and device instability issues. Such issues can arise from environmental influences as well as from the chemical incompatibility of the perovskite layer with charge transport layers and electrodes used in the device stack. Several attempts have been made to address the instability issue, mostly concentrating on the substitution of the organic cations in the perovskite lattice, and on alternatives for the organic charge extraction layers, without laying much emphasis on stabilising the existing, conventional high efficiency methylammonium lead iodide/spiro-OMeTAD based devices. To address the latter issue, we utilized atomic layer deposition (ALD) as a straightforward and soft deposition process to conformally deposit Al2O3 on top of the perovskite absorber. An ultra-thin ALD Al2O3 film effectively protects the perovskite layer while it is sufficiently thin enough to provide a tunnel contact. The fabricated perovskite solar cells (PSCs) exhibit superior device performance with a stabilised power conversion efficiency (PCE) of 18%, a significant reduction in hysteresis loss, and enhanced long-term stability (beyond 60 days) as a function of the unencapsulated storage time in ambient air, under humidity conditions ranging from 40 to 70% at room temperature. PCE measurements after 70 days of humidity exposure show that the devices incorporating 10 cycles of ALD Al2O3 could significantly retard the humidity-induced degradation thereby retaining about 60–70% of its initial PCE, while that of the reference devices drops to a remaining 12% of their initial PCE. This work successfully addresses and tackles the problem of the hybrid organic–inorganic IV-halide perovskite solar cell’s instability in a humid environment, and the key findings pave the way to the upscaling of these devices.

211 citations

Patent
07 Jun 2007
TL;DR: In this article, a gas supply device is arranged to provide a gas mixture with a precursor material to the treatment space for allowing reactive surface sites to react with precursor material molecules to give a surface covered by a monolayer of precursor molecules attached via the reactive sites to the surface of the substrate.
Abstract: Apparatus and method for atomic layer deposition on a surface of a substrate (6) in a treatment space. A gas supply device (15, 16) is present for providing various gas mixtures to the treatment space. The gas supply device (15, 16) is arranged to provide a gas mixture with a precursor material to the treatment space for allowing reactive surface sites to react with precursor material molecules to give a surface covered by a monolayer of precursor molecules attached via the reactive sites to the surface of the substrate. Subsequently, a gas mixture comprising a reactive agent capable to convert the attached precursor molecules to active precursor sites is provided. A plasma generator (10) is present for generating an atmospheric pressure plasma in the gas mixture comprising the reactive agent.

196 citations

Journal ArticleDOI
TL;DR: In this paper, a monolithic perovskite/CIGSe tandem solar cell was proposed to increase the power conversion efficiency (PCE) of conventional single-junction photovoltaic devices.
Abstract: Perovskite-based tandem solar cells can increase the power conversion efficiency (PCE) of conventional single-junction photovoltaic devices. Here, we present monolithic perovskite/CIGSe tandem sola...

138 citations


Cited by
More filters
Journal ArticleDOI

4,756 citations

Reference EntryDOI
31 Oct 2001
TL;DR: The American Society for Testing and Materials (ASTM) as mentioned in this paper is an independent organization devoted to the development of standards for testing and materials, and is a member of IEEE 802.11.
Abstract: The American Society for Testing and Materials (ASTM) is an independent organization devoted to the development of standards.

3,792 citations

Journal ArticleDOI
TL;DR: One-year stable perovskite devices are shown by engineering an ultra-stable 2D/3D (HOOC(CH2)4NH3)2PbI4/CH3NH3Pb mezzanine junction, which will enable the timely commercialization of perovSKite solar cells.
Abstract: Despite the impressive photovoltaic performances with power conversion efficiency beyond 22%, perovskite solar cells are poorly stable under operation, failing by far the market requirements. Various technological approaches have been proposed to overcome the instability problem, which, while delivering appreciable incremental improvements, are still far from a market-proof solution. Here we show one-year stable perovskite devices by engineering an ultra-stable 2D/3D (HOOC(CH2)4NH3)2PbI4/CH3NH3PbI3 perovskite junction. The 2D/3D forms an exceptional gradually-organized multi-dimensional interface that yields up to 12.9% efficiency in a carbon-based architecture, and 14.6% in standard mesoporous solar cells. To demonstrate the up-scale potential of our technology, we fabricate 10 × 10 cm2 solar modules by a fully printable industrial-scale process, delivering 11.2% efficiency stable for >10,000 h with zero loss in performances measured under controlled standard conditions. This innovative stable and low-cost architecture will enable the timely commercialization of perovskite solar cells. Up-scaling represents a key challenge for photovoltaics based on metal halide perovskites. Using a composite of 2D and 3D perovskites in combination with a printable carbon black/graphite counter electrode; Granciniet al., report 11.2% efficient modules stable over 10,000 hours.

1,531 citations

Patent
01 Aug 2008
TL;DR: In this article, the oxide semiconductor film has at least a crystallized region in a channel region, which is defined as a region of interest (ROI) for a semiconductor device.
Abstract: An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.

1,501 citations