scispace - formally typeset
Search or ask a question
Author

Marialva Tereza Ferreira de Araújo

Other affiliations: Evandro Chagas Institute
Bio: Marialva Tereza Ferreira de Araújo is an academic researcher from Federal University of Pará. The author has contributed to research in topics: Hepatitis C & Microcephaly. The author has an hindex of 13, co-authored 33 publications receiving 3681 citations. Previous affiliations of Marialva Tereza Ferreira de Araújo include Evandro Chagas Institute.

Papers
More filters
Journal ArticleDOI
TL;DR: The in situ immune response profile and mechanisms of neuronal cell damage in fatal Zika microcephaly cases were investigated and changes found were mainly calcification, necrosis, neuronophagy, gliosis, microglial nodules, and inflammatory infiltration of mononuclear cells.
Abstract: Zika virus (ZIKV) has recently caused a pandemic disease, and many cases of ZIKV infection in pregnant women resulted in abortion, stillbirth, deaths and congenital defects including microcephaly, which now has been proposed as ZIKV congenital syndrome. This study aimed to investigate the in situ immune response profile and mechanisms of neuronal cell damage in fatal Zika microcephaly cases. Brain tissue samples were collected from 15 cases, including 10 microcephalic ZIKV-positive neonates with fatal outcome and five neonatal control flavivirus-negative neonates that died due to other causes, but with preserved central nervous system (CNS) architecture. In microcephaly cases, the histopathological features of the tissue samples were characterized in three CNS areas (meninges, perivascular space, and parenchyma). The changes found were mainly calcification, necrosis, neuronophagy, gliosis, microglial nodules, and inflammatory infiltration of mononuclear cells. The in situ immune response against ZIKV in the CNS of newborns is complex. Despite the predominant expression of Th2 cytokines, other cytokines such as Th1, Th17, Treg, Th9, and Th22 are involved to a lesser extent, but are still likely to participate in the immunopathogenic mechanisms of neural disease in fatal cases of microcephaly caused by ZIKV.

3,514 citations

Journal ArticleDOI
TL;DR: Findings show that cagA and vacA genotyping may have clinical relevance in Brazil and were associated with increased risk of peptic ulcer disease and higher amounts of lymphocytic and neutrophilic infiltrates and the presence of intestinal metaplasia.
Abstract: We have examined the prevalence of gene cagA and vacA alleles in 129 patients, 69 with gastritis and 60 with peptic ulcer diseases from North Brazil and their relation with histopathological data. vacA and cagA genotype were determined by polymerase chain reaction. Hematoxylin-eosin staining was used for histological diagnosis. 96.6% of the patients were colonized by Helicobacter pylori strains harboring single vacA genotype (nont-mixed infection). Among them, 11.8% had subtype s1a, 67.8% had subtype s1b, and 17% subtype s2. In regard to the middle region analysis, m1 alleles were found in 75.4% and m2 in 21.2% of patients. The cagA gene was detected in 78% patients infected with H. pylori and was associated with the s1-m1 vacA genotype. The H. pylori strains, vacA s1b m1/cagA-positive, were associated with increased risk of peptic ulcer disease and higher amounts of lymphocytic and neutrophilic infiltrates and the presence of intestinal metaplasia. These findings show that cagA and vacA genotyping may have clinical relevance in Brazil.

42 citations

Journal ArticleDOI
TL;DR: The first isolation of WNV in Brazil from a horse with neurologic disease, which was clustered into lineage 1a with others US WNV strains isolated in beginning of 2000’s decade is reported.
Abstract: Background Serological evidence of West Nile virus (WNV) infection has been reported in different regions of Brazil from equine and human hosts but the virus had never been isolated in the country. Objectives We sought to identify the viral etiology of equine encephalitis in Espirito Santo state. Methods We performed viral culture in C6/36 cells, molecular detection of WNV genome, histopathology and immunohistochemistry from horse cerebral tissue. We also carried out sequencing, phylogenetic analysis and molecular clock. Findings Histopathologic analysis from horse cerebral tissue showed injury related to encephalitis and WNV infection was confirmed by immunohistochemistry. The virus was detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR) from brain tissue and subsequently isolated in C6/36 cells. WNV full-length genome was sequenced showing the isolated strain belongs to lineage 1a. The molecular clock indicated that Brazilian WNV strain share the same common ancestor that were circulating in US during 2002-2005. Main conclusions Here we report the first isolation of WNV in Brazil from a horse with neurologic disease, which was clustered into lineage 1a with others US WNV strains isolated in beginning of 2000's decade.

36 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: The in situ immune response profile and mechanisms of neuronal cell damage in fatal Zika microcephaly cases were investigated and changes found were mainly calcification, necrosis, neuronophagy, gliosis, microglial nodules, and inflammatory infiltration of mononuclear cells.
Abstract: Zika virus (ZIKV) has recently caused a pandemic disease, and many cases of ZIKV infection in pregnant women resulted in abortion, stillbirth, deaths and congenital defects including microcephaly, which now has been proposed as ZIKV congenital syndrome. This study aimed to investigate the in situ immune response profile and mechanisms of neuronal cell damage in fatal Zika microcephaly cases. Brain tissue samples were collected from 15 cases, including 10 microcephalic ZIKV-positive neonates with fatal outcome and five neonatal control flavivirus-negative neonates that died due to other causes, but with preserved central nervous system (CNS) architecture. In microcephaly cases, the histopathological features of the tissue samples were characterized in three CNS areas (meninges, perivascular space, and parenchyma). The changes found were mainly calcification, necrosis, neuronophagy, gliosis, microglial nodules, and inflammatory infiltration of mononuclear cells. The in situ immune response against ZIKV in the CNS of newborns is complex. Despite the predominant expression of Th2 cytokines, other cytokines such as Th1, Th17, Treg, Th9, and Th22 are involved to a lesser extent, but are still likely to participate in the immunopathogenic mechanisms of neural disease in fatal cases of microcephaly caused by ZIKV.

3,514 citations

Journal ArticleDOI
TL;DR: HBV and HCV infections account for the majority of cirrhosis and primary liver cancer throughout most of the world, highlighting the need for programs to prevent new infections and provide medical management and treatment for those already infected.

2,385 citations

Journal ArticleDOI
TL;DR: This systematic review and meta-analysis of existing research works and findings in relation to the prevalence of stress, anxiety and depression in the general population during the COVID-19 pandemic found that it is essential to preserve the mental health of individuals and to develop psychological interventions that can improve themental health of vulnerable groups during the pandemic.
Abstract: The COVID-19 pandemic has had a significant impact on public mental health Therefore, monitoring and oversight of the population mental health during crises such as a panedmic is an immediate priority The aim of this study is to analyze the existing research works and findings in relation to the prevalence of stress, anxiety and depression in the general population during the COVID-19 pandemic In this systematic review and meta-analysis, articles that have focused on stress and anxiety prevalence among the general population during the COVID-19 pandemic were searched in the Science Direct, Embase, Scopus, PubMed, Web of Science (ISI) and Google Scholar databases, without a lower time limit and until May 2020 In order to perform a meta-analysis of the collected studies, the random effects model was used, and the heterogeneity of studies was investigated using the I2 index Moreover data analysis was conducted using the Comprehensive Meta-Analysis (CMA) software The prevalence of stress in 5 studies with a total sample size of 9074 is obtained as 296% (95% confidence limit: 243–354), the prevalence of anxiety in 17 studies with a sample size of 63,439 as 319% (95% confidence interval: 275–367), and the prevalence of depression in 14 studies with a sample size of 44,531 people as 337% (95% confidence interval: 275–406) COVID-19 not only causes physical health concerns but also results in a number of psychological disorders The spread of the new coronavirus can impact the mental health of people in different communities Thus, it is essential to preserve the mental health of individuals and to develop psychological interventions that can improve the mental health of vulnerable groups during the COVID-19 pandemic

2,133 citations

Journal ArticleDOI
TL;DR: How the gut microbiota and derived microbial compounds may contribute to human metabolic health and to the pathogenesis of common metabolic diseases are discussed, and examples of microbiota-targeted interventions aiming to optimize metabolic health are highlighted.
Abstract: Observational findings achieved during the past two decades suggest that the intestinal microbiota may contribute to the metabolic health of the human host and, when aberrant, to the pathogenesis of various common metabolic disorders including obesity, type 2 diabetes, non-alcoholic liver disease, cardio-metabolic diseases and malnutrition. However, to gain a mechanistic understanding of how the gut microbiota affects host metabolism, research is moving from descriptive microbiota census analyses to cause-and-effect studies. Joint analyses of high-throughput human multi-omics data, including metagenomics and metabolomics data, together with measures of host physiology and mechanistic experiments in humans, animals and cells hold potential as initial steps in the identification of potential molecular mechanisms behind reported associations. In this Review, we discuss the current knowledge on how gut microbiota and derived microbial compounds may link to metabolism of the healthy host or to the pathogenesis of common metabolic diseases. We highlight examples of microbiota-targeted interventions aiming to optimize metabolic health, and we provide perspectives for future basic and translational investigations within the nascent and promising research field. In this Review, Fan and Pedersen discuss how the gut microbiota and derived microbial compounds may contribute to human metabolic health and to the pathogenesis of common metabolic diseases, and highlight examples of microbiota-targeted interventions aiming to optimize metabolic health.

1,445 citations