scispace - formally typeset
Search or ask a question
Author

Mariana Vertenstein

Bio: Mariana Vertenstein is an academic researcher from National Center for Atmospheric Research. The author has contributed to research in topics: Climate model & Community Climate System Model. The author has an hindex of 27, co-authored 47 publications receiving 8819 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The fourth version of the Community Climate System Model (CCSM4) was recently completed and released to the climate community as mentioned in this paper, which describes developments to all CCSM components, and documents fully coupled preindustrial control runs compared to the previous version.
Abstract: The fourth version of the Community Climate System Model (CCSM4) was recently completed and released to the climate community. This paper describes developments to all CCSM components, and documents fully coupled preindustrial control runs compared to the previous version, CCSM3. Using the standard atmosphere and land resolution of 1° results in the sea surface temperature biases in the major upwelling regions being comparable to the 1.4°-resolution CCSM3. Two changes to the deep convection scheme in the atmosphere component result in CCSM4 producing El Nino–Southern Oscillation variability with a much more realistic frequency distribution than in CCSM3, although the amplitude is too large compared to observations. These changes also improve the Madden–Julian oscillation and the frequency distribution of tropical precipitation. A new overflow parameterization in the ocean component leads to an improved simulation of the Gulf Stream path and the North Atlantic Ocean meridional overturning circulati...

2,835 citations

Journal ArticleDOI
TL;DR: The Community Earth System Model (CESM) community designed the CESM Large Ensemble with the explicit goal of enabling assessment of climate change in the presence of internal climate variability as discussed by the authors.
Abstract: While internal climate variability is known to affect climate projections, its influence is often underappreciated and confused with model error. Why? In general, modeling centers contribute a small number of realizations to international climate model assessments [e.g., phase 5 of the Coupled Model Intercomparison Project (CMIP5)]. As a result, model error and internal climate variability are difficult, and at times impossible, to disentangle. In response, the Community Earth System Model (CESM) community designed the CESM Large Ensemble (CESM-LE) with the explicit goal of enabling assessment of climate change in the presence of internal climate variability. All CESM-LE simulations use a single CMIP5 model (CESM with the Community Atmosphere Model, version 5). The core simulations replay the twenty to twenty-first century (1920–2100) 30 times under historical and representative concentration pathway 8.5 external forcing with small initial condition differences. Two companion 1000+-yr-long preindu...

1,869 citations

Journal ArticleDOI
TL;DR: The Community Earth System Model Version 2 (CESM2) as discussed by the authors is the most recent version of the Coupled Model Intercomparison Project (CMEI) coupled model.
Abstract: An overview of the Community Earth System Model Version 2 (CESM2) is provided, including a discussion of the challenges encountered during its development and how they were addressed. In addition, an evaluation of a pair of CESM2 long preindustrial control and historical ensemble simulations is presented. These simulations were performed using the nominal 1° horizontal resolution configuration of the coupled model with both the “low-top” (40 km, with limited chemistry) and “high-top” (130 km, with comprehensive chemistry) versions of the atmospheric component. CESM2 contains many substantial science and infrastructure improvements and new capabilities since its previous major release, CESM1, resulting in improved historical simulations in comparison to CESM1 and available observations. These include major reductions in low-latitude precipitation and shortwave cloud forcing biases; better representation of the Madden-Julian Oscillation; better El Nino-Southern Oscillation-related teleconnections; and a global land carbon accumulation trend that agrees well with observationally based estimates. Most tropospheric and surface features of the low- and high-top simulations are very similar to each other, so these improvements are present in both configurations. CESM2 has an equilibrium climate sensitivity of 5.1–5.3 °C, larger than in CESM1, primarily due to a combination of relatively small changes to cloud microphysics and boundary layer parameters. In contrast, CESM2's transient climate response of 1.9–2.0 °C is comparable to that of CESM1. The model outputs from these and many other simulations are available to the research community, and they represent CESM2's contributions to the Coupled Model Intercomparison Project Phase 6.

884 citations

Journal ArticleDOI
TL;DR: In this paper, the community land model (CLM2) was proposed, where the surface is represented by five primary subgrid land cover types (glacier, lake, wetland, urban, vegetated) in each grid cell.
Abstract: The land surface parameterization used with the community climate model (CCM3) and the climate system model (CSM1), the National Center for Atmospheric Research land surface model (NCAR LSM1), has been modified as part of the development of the next version of these climate models. This new model is known as the community land model (CLM2). In CLM2, the surface is represented by five primary subgrid land cover types (glacier, lake, wetland, urban, vegetated) in each grid cell. The vegetated portion of a grid cell is further divided into patches of up to 4 of 16 plant functional types, each with its own leaf and stem area index and canopy height. The relative area of each subgrid unit, the plant functional type, and leaf area index are obtained from 1-km satellite data. The soil texture dataset allows vertical profiles of sand and clay. Most of the physical parameterizations in the model were also updated. Major model differences include: 10 layers for soil temperature and soil water with explicit treatment of liquid water and ice; a multilayer snowpack; runoff based on the TOPMODEL concept; new formulation of ground and vegetation fluxes; and vertical root profiles from a global synthesis of ecological studies. Simulations with CCM3 show significant improvements in surface air temperature, snow cover, and runoff for CLM2 compared to LSM1. CLM2 generally warms surface air temperature in all seasons compared to LSM1, reducing or eliminating many cold biases. Annual precipitation over land is reduced from 2.35 mm day21 in LSM1 to 2.14 mm day21 in CLM2. The hydrologic cycle is also different. Transpiration and ground evaporation are reduced. Leaves and stems evaporate more intercepted water annually in CLM2 than LSM1. Global runoff from land increases from 0.75 mm day21 in LSM1 to 0.84 mm day21 in CLM2. The annual cycle of runoff is greatly improved in CLM2, especially in arctic and boreal regions where the model has low runoff in cold seasons when the soil is frozen and high runoff during the snowmelt season. Most of the differences between CLM2 and LSM1 are attributed to particular parameterizations rather than to different surface datasets. Important processes include: multilayer snow, frozen water, interception, soil water limitation to latent heat, and higher aerodynamic resistances to heat exchange from ground.

666 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
13 Jun 2008-Science
TL;DR: Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.
Abstract: The world's forests influence climate through physical, chemical, and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. These complex and nonlinear forest-atmosphere interactions can dampen or amplify anthropogenic climate change. Tropical, temperate, and boreal reforestation and afforestation attenuate global warming through carbon sequestration. Biogeophysical feedbacks can enhance or diminish this negative climate forcing. Tropical forests mitigate warming through evaporative cooling, but the low albedo of boreal forests is a positive climate forcing. The evaporative effect of temperate forests is unclear. The net climate forcing from these and other processes is not known. Forests are under tremendous pressure from global change. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.

4,541 citations

Journal ArticleDOI
TL;DR: The fourth version of the Community Climate System Model (CCSM4) was recently completed and released to the climate community as mentioned in this paper, which describes developments to all CCSM components, and documents fully coupled preindustrial control runs compared to the previous version.
Abstract: The fourth version of the Community Climate System Model (CCSM4) was recently completed and released to the climate community. This paper describes developments to all CCSM components, and documents fully coupled preindustrial control runs compared to the previous version, CCSM3. Using the standard atmosphere and land resolution of 1° results in the sea surface temperature biases in the major upwelling regions being comparable to the 1.4°-resolution CCSM3. Two changes to the deep convection scheme in the atmosphere component result in CCSM4 producing El Nino–Southern Oscillation variability with a much more realistic frequency distribution than in CCSM3, although the amplitude is too large compared to observations. These changes also improve the Madden–Julian oscillation and the frequency distribution of tropical precipitation. A new overflow parameterization in the ocean component leads to an improved simulation of the Gulf Stream path and the North Atlantic Ocean meridional overturning circulati...

2,835 citations

Journal ArticleDOI
TL;DR: The datasets and algorithms used to create the Collection 5 MODIS Global Land Cover Type product, which is substantially changed relative to Collection 4, are described, with a four-fold increase in spatial resolution and changes in the input data and classification algorithm.

2,713 citations

Journal ArticleDOI
TL;DR: The Community Climate System Model version 3 (CCSM3) as discussed by the authors is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler.
Abstract: The Community Climate System Model version 3 (CCSM3) has recently been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale dynamics, variability, and climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for the atmosphere and land and a grid with approximately 1° resolution for the ocean and sea ice. The new system incorporates several significant improvements in the physical parameterizations. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol ...

2,500 citations