scispace - formally typeset
Search or ask a question
Author

Marianne Tecklenburg

Bio: Marianne Tecklenburg is an academic researcher from Anschutz Medical Campus. The author has contributed to research in topics: Origin recognition complex & Eukaryotic DNA replication. The author has an hindex of 8, co-authored 8 publications receiving 617 citations.

Papers
More filters
Journal ArticleDOI
13 Nov 2003-Oncogene
TL;DR: The results identify molecular mechanisms of silibinin efficacy as a cell cycle regulator and apoptosis inducer in human colon carcinoma HT-29 cells, and justify further studies to investigate potential usefulness of this nontoxic agent in colon cancer prevention and intervention.
Abstract: Silibinin upregulates the expression of cyclin-dependent kinase inhibitors and causes cell cycle arrest and apoptosis in human colon carcinoma HT-29 cells

215 citations

Journal ArticleDOI
01 Feb 1980-Gene
TL;DR: Evidence is presented indicating that only one tetrameric repressor molecule binds strongly to a segment of four (or fewer) tandem operators, but that two repressor molecules can be accommodated on segments containing at least six tandem operators.

145 citations

Journal ArticleDOI
TL;DR: The results suggest that whereas relative importance of these molecules might be cell line specific, their induction by silibinin is essential for its G1 arrest effect, and identifies a central role of p21 and p27 induction and their regulatory mechanism in silib inin-mediated cell cycle arrest.
Abstract: Recent studies have shown that silibinin induces p21/Cip1 and p27/Kip1 and G1 arrest in different prostate cancer cells irrespective of p53 status; however, biological significance and mechanism of such induction have not been studied Here, using two different prostate cancer cell lines DU145 and 22Rv1, representing androgen-independent and androgen-dependent stages of malignancy, first we investigated the importance of p21 and p27 induction in silibinin-mediated G1 arrest Silencing p21 and p27 individually by RNA interference showed marked reversal in G1 arrest; however, their simultaneous ablation showed additional reversal of G1 arrest in 22Rv1 but not DU145 cells These results suggest that whereas relative importance of these molecules might be cell line specific, their induction by silibinin is essential for its G1 arrest effect Next, studies were done to examine mechanisms of their induction where cycloheximide-chase experiments showed that silibinin increases p21 and p27 protein half-life This effect was accompanied by strong reduction in Skp2 level and its binding with p21 and p27 together with strong decrease in phosphorylated Thr(187) p27 without considerable change in proteasomal activity, suggesting a posttranslational mechanism Skp2 role was further elucidated using Skp2-small interfering RNA-transfected cells, where decreased G1 arrest and attenuated Cip/Kip induction were observed with silibinin treatment Further, silibinin caused a marked increase in p21 and p27 mRNA levels together with an increase in their promoter activity, also indicating a transcriptional mechanism Together, our results for the first time identify a central role of p21 and p27 induction and their regulatory mechanism in silibinin-mediated cell cycle arrest

130 citations

Journal ArticleDOI
01 Mar 1999-Genetics
TL;DR: Two different functions of the cell cycle, initiation of DNA replication and the checkpoint function, can be coordinately regulated through the common intermediate RAD53, indicating that RAD53 positively regulates DBF4.
Abstract: The Cdc7p and Dbf4p proteins form an active kinase complex in Saccharomyces cerevisiae that is essential for the initiation of DNA replication. A genetic screen for mutations that are lethal in combination with cdc7-1 led to the isolation of seven lsd (lethal with seven defect) complementation groups. The lsd7 complementation group contained two temperature-sensitive dbf4 alleles. The lsd1 complementation group contained a new allele of RAD53, which was designated rad53-31. RAD53 encodes an essential protein kinase that is required for the activation of DNA damage and DNA replication checkpoint pathways, and that is implicated as a positive regulator of S phase. Unlike other RAD53 alleles, we demonstrate that the rad53-31 allele retains an intact checkpoint function. Thus, the checkpoint function and the DNA replication function of RAD53 can be functionally separated. The activation of DNA replication through RAD53 most likely occurs through DBF4. Two-hybrid analysis indicates that the Rad53p protein binds to Dbf4p. Furthermore, the steady-state level of DBF4 message and Dbf4p protein is reduced in several rad53 mutant strains, indicating that RAD53 positively regulates DBF4. These results suggest that two different functions of the cell cycle, initiation of DNA replication and the checkpoint function, can be coordinately regulated through the common intermediate RAD53.

58 citations

Journal ArticleDOI
01 May 2002-Genetics
TL;DR: A model is proposed in which the Mcm5-bob1 protein assumes a unique molecular conformation without prior action by either kinase, which allows for stable binding of Cdc45p to the origin.
Abstract: The roles in DNA replication of two distinct protein kinases, Cdc7p/Dbf4p and Cdk1p/Clb (B-type cyclin), were studied. This was accomplished through a genetic and molecular analysis of the mechanism by which the mcm5-bob1 mutation bypasses the function of the Cdc7p/Dbf4p kinase. Genetic experiments revealed that loss of either Clb5p or Clb2p cyclins suppresses the mcm5-bob1 mutation and prevents bypass. These two cyclins have distinct roles in bypass and presumably in DNA replication as overexpression of one could not complement the loss of the other. Furthermore, the ectopic expression of CLB2 in G1 phase cannot substitute for CLB5 function in bypass of Cdc7p/Dbf4p by mcm5-bob1. Molecular experiments revealed that the mcm5-bob1 mutation allows for constitutive loading of Cdc45p at early origins in arrested G1 phase cells when both kinases are inactive. A model is proposed in which the Mcm5-bob1 protein assumes a unique molecular conformation without prior action by either kinase. This conformation allows for stable binding of Cdc45p to the origin. However, DNA replication still cannot occur without the combined action of Cdk1p/Clb5p and Cdk1p/Clb2p. Thus Cdc7p and Cdk1p kinases catalyze the initiation of DNA replication at several distinct steps, of which only a subset is bypassed by the mcm5-bob1 mutation.

43 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review describes the current understanding of the events of initiation of eukaryotic replication factors and how they are coordinated with cell cycle progression and emphasizes recent progress in determining the function of the different replication factors once they have been assembled at the origin.
Abstract: ▪ Abstract The maintenance of the eukaryotic genome requires precisely coordinated replication of the entire genome each time a cell divides. To achieve this coordination, eukaryotic cells use an ordered series of steps to form several key protein assemblies at origins of replication. Recent studies have identified many of the protein components of these complexes and the time during the cell cycle they assemble at the origin. Interestingly, despite distinct differences in origin structure, the identity and order of assembly of eukaryotic replication factors is highly conserved across all species. This review describes our current understanding of these events and how they are coordinated with cell cycle progression. We focus on bringing together the results from different organisms to provide a coherent model of the events of initiation. We emphasize recent progress in determining the function of the different replication factors once they have been assembled at the origin.

2,169 citations

Journal ArticleDOI
TL;DR: There is evidence that drugs that inhibit one of these pathways in such tumours could prove useful as single-agent therapies, with the potential advantage that this approach could be selective for tumour cells and have fewer side effects.
Abstract: DNA repair pathways can enable tumour cells to survive DNA damage that is induced by chemotherapeutic treatments; therefore, inhibitors of specific DNA repair pathways might prove efficacious when used in combination with DNA-damaging chemotherapeutic drugs. In addition, alterations in DNA repair pathways that arise during tumour development can make some cancer cells reliant on a reduced set of DNA repair pathways for survival. There is evidence that drugs that inhibit one of these pathways in such tumours could prove useful as single-agent therapies, with the potential advantage that this approach could be selective for tumour cells and have fewer side effects.

1,533 citations

Journal ArticleDOI
TL;DR: Two hybrid promoters that are functional in Escherichia coli have been constructed and are useful for the controlled expression of foreign genes at high levels in E. coli.
Abstract: Two hybrid promoters that are functional in Escherichia coli have been constructed. These hybrid promoters, tacI and tacII, were derived from sequences of the trp and the lac UV5 promoters. In the first hybrid promoter (tacI), the DNA upstream of position -20 with respect to the transcriptional start site was derived from the trp promoter. The DNA downstream of position -20 was derived from the lac UV5 promoter. In the second hybrid promoter (tacII), the DNA upstream of position -11 at the Hpa I site within the Pribnow box was derived from the trp promoter. The DNA downstream of position -11 is a 46-base-pair synthetic DNA fragment that specifies part of the hybrid Pribnow box and the entire lac operator. It also specifies a Shine-Dalgarno sequence flanked by two unique restriction sites (portable Shine-Dalgarno sequence). The tacI and the tacII promoters respectively direct transcription approximately 11 and 7 times more efficiently than the derepressed parental lac UV5 promoter and approximately 3 and 2 times more efficiently than the trp promoter in the absence of the trp repressor. Both hybrid promoters can be repressed by the lac repressor and both can be derepressed with isopropyl beta-D-thiogalactoside. Consequently, these hybrid promoters are useful for the controlled expression of foreign genes at high levels in E. coli. In contrast to the trp and the lac UV5 promoters, the tacI promoter has not only a consensus -35 sequence but also a consensus Pribnow box sequence. This may explain the higher efficiency of this hybrid promoter with respect to either one of the parental promoters.

1,255 citations

Journal ArticleDOI
TL;DR: Four types of processes that may be involved in protein translocation events between DNA sites are defined, and the consequences of each for the overall rate of target location are worked out as a function of both the nonspecific binding affinity between protein and DNA and the length of the DNA molecule containing the target sequence.
Abstract: Genome regulatory proteins (e.g., repressors or polymerases) that function by binding to specific chromosomal target base pair sequences (e.g., operators or promoters) can appear to arrive at their targets at faster than diffusion-controlled rates. These proteins also exhibit appreciable affinity for nonspecific DNA, and thus this apparently facilitated binding rate must be interpreted in terms of a two-step binding mechanism. The first step involves free diffusion to any nonspecific binding site on the DNA, and the second step comprises a series of protein translocation events that are also driven by thermal fluctuations. Because of nonspecific binding, the search process in the second step is of reduced dimensionality (or volume); this results in an accelerated apparent rate of target location. In this paper we define four types of processes that may be involved in these protein translocation events between DNA sites. These are (i) "macroscopic" dissociation--reassociation processes within the domain of the DNA molecule, (ii) "microscopic" dissociation--reassociation events between closely spaced sites in the DNA molecule, (iii) "intersegment transfer" (via "ring-closure") processes between different segments of the DNA molecule, and (iv) "sliding" along the DNA molecule. We present mathematical and physical descriptions of each of these processes, and the consequences of each for the overall rate of target location are worked out as a function of both the nonspecific binding affinity between protein and DNA and the length of the DNA molecule containing the target sequence. The theory is developed in terms of the Escherichia coli lac repressor--operator interaction since data for testing these approaches are available for this system [Barkley, M. (1981) Biochemistry 20, 3833; Winter, R. B., & von Hippel, P. H. (1981) Biochemistry (second paper of three in this issue); Winter, R. B., Berg, O. G., & von Hippel, P. H. (1981) Biochemistry (third paper of three in this issue)]. However, we emphasize that this approach is general for the analysis of mechanisms of biological target location involving facilitated transfer processes via nonspecific binding to the general system of which the target forms a small part.

1,240 citations

Journal ArticleDOI
TL;DR: Significant differences in microRNA abundance were found between organ-confined tumors and those with extraprostatic disease extension, and evidence that some microRNAs are androgen-regulated and that tumor micro RNAs influence transcript abundance of protein-coding target genes in the cancerous prostate was found.
Abstract: MicroRNAs are small non-coding RNAs that regulate the expression of protein-coding genes. To evaluate the involvement of microRNAs in prostate cancer, we determined genome-wide expression of microRNAs and mRNAs in 60 primary prostate tumors and 16 non-tumor prostate tissues. The mRNA analysis revealed that key components of microRNA processing and several microRNA host genes, e.g., MCM7 and C9orf5, were significantly up-regulated in prostate tumors. Consistent with these findings, tumors expressed the miR-106b-25 cluster, which maps to intron 13 of MCM7, and miR-32, which maps to intron 14 of C9orf5, at significantly higher levels than non-tumor prostate. The expression levels of other microRNAs, including a number of miR-106b-25 cluster homologues, were also altered in prostate tumors. Additional differences in microRNA abundance were found between organ-confined tumors and those with extraprostatic disease extension. Lastly, we found evidence that some microRNAs are androgen-regulated and that tumor microRNAs influence transcript abundance of protein-coding target genes in the cancerous prostate. In cell culture, E2F1 and p21/WAF1 were identified as targets of miR-106b, Bim of miR-32, and exportin-6 and protein tyrosine kinase 9 of miR-1. In summary, microRNA expression becomes altered with the development and progression of prostate cancer. Some of these microRNAs regulate the expression of cancer-related genes in prostate cancer cells.

746 citations