scispace - formally typeset
Search or ask a question
Author

Marie-Elisabeth Cuvelier

Bio: Marie-Elisabeth Cuvelier is an academic researcher from École Normale Supérieure. The author has contributed to research in topics: Phenols & Caffeic acid. The author has an hindex of 13, co-authored 15 publications receiving 18330 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The antiradical properties of various antioxidants were determined using the free radical 2,2-Diphenyl-1-picrylhydrazyl (DPPH*) in its radical form as discussed by the authors.
Abstract: The antiradical activities of various antioxidants were determined using the free radical, 2,2-Diphenyl-1-picrylhydrazyl (DPPH*). In its radical form. DPPH* has an absorption band at 515 nm which dissappears upon reduction by an antiradical compound. Twenty compounds were reacted with the DPPH* and shown to follow one of three possible reaction kinetic types. Ascorbic acid, isoascorbic acid and isoeugenol reacted quickly with the DPPH* reaching a steady state immediately. Rosmarinic acid and δ-tocopherol reacted a little slower and reached a steady state within 30 min. The remaining compounds reacted more progressively with the DPPH* reaching a steady state from 1 to 6 h. Caffeic acid, gentisic acid and gallic acid showed the highest antiradical activities with a stoichiometry of 4 to 6 reduced DPPH* molecules per molecule of antioxidant. Vanillin, phenol, γ-resorcylic acid and vanillic acid were found to be poor antiradical compounds. The stoichiometry for the other 13 phenolic compounds varied from one to three reduced DPPH* molecules per molecule of antioxidant. Possible mechanisms are proposed to explain the experimental results.

18,907 citations

Journal ArticleDOI
TL;DR: In this article, a possible way to valorize citrus peels and seeds, which are byproducts of the juice extraction industry, is to use them as natural antioxidants, and the antioxidant activity of several citrus peel and...
Abstract: A possible way to valorize citrus peels and seeds, which are byproducts of the juice extraction industry, is to use them as natural antioxidants. The antioxidant activity of several citrus peel and...

625 citations

Journal ArticleDOI
TL;DR: In this article, the most effective compounds were carnosol, rosmarinic acid, and carnosic acid, followed by rosmanol and rosmadial, genkwanin, and cirsimaritin.
Abstract: Eight sage (Salvia officinalis) and twenty-four rosemary (Rosmarinus officinalis) extracts, originating from pilot-plant or commercial sources, had different antioxidative activities as measured by accelerated autoxidation of methyl linoleate. Twenty-seven compounds were characterized in the Labiatae family extracts by high-performance liquid chromatography (HPLC) coupled with mass spectrometry, equipped with an atmospheric pressure chemical ionization interface, and by HPLC coupled with a photodiode array spectrophotometer. Twenty-two compounds were identified, including phenolic acids, carnosol derivatives, and flavonoids. The extracts showed great variation in their HPLC profiles, and no correlation was apparent between their antioxidative efficiency and their composition, in twenty specific phenols. Data indicated that the most effective compounds were carnosol, rosmarinic acid, and carnosic acid, followed by caffeic acid, rosmanol, rosmadial, genkwanin, and cirsimaritin.

561 citations

Journal ArticleDOI
TL;DR: In this paper, the antioxidant power of the mixture was compared with the expected antioxidant activity calculated by the sum of efficiencies of each compound separately, relative to their proportions in the mixture.
Abstract: Interactions between phenolic antioxidants in binary systems were determined by adding two antioxidants simultaneously in equimolar proportions to an aqueous dispersion of linoleic acid that was then subjected to 2,2′-azobis (2-amidinopropane) dihydrochloride-induced oxidation and by evaluating the protective effect of the antioxidant mixture. The antioxidant power of the mixture was then compared with the expected antioxidant activity calculated by the sum of efficiencies of each compound separately, relative to their proportions in the mixture. If it was higher, a synergy was pointed out whereas a lower value was representative of an antagonism. Thus, synergistic effects were observed between rosmarinic acid and quercetin, or rosmarinic acid and caffeic acid, whereas antagonistic effects were obtained with the following mixtures: α-tocopherol/caffeic acid; α-tocopherol/rosmarinic acid; (+)-catechin/caffeic acid; and caffeic acid/quercetin. These mixture effects are partly explained by regeneration mechanisms between antioxidants, depending on the chemical structure of molecules and on the possible formation of stable intermolecular complexes.

214 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The antiradical properties of various antioxidants were determined using the free radical 2,2-Diphenyl-1-picrylhydrazyl (DPPH*) in its radical form as discussed by the authors.
Abstract: The antiradical activities of various antioxidants were determined using the free radical, 2,2-Diphenyl-1-picrylhydrazyl (DPPH*). In its radical form. DPPH* has an absorption band at 515 nm which dissappears upon reduction by an antiradical compound. Twenty compounds were reacted with the DPPH* and shown to follow one of three possible reaction kinetic types. Ascorbic acid, isoascorbic acid and isoeugenol reacted quickly with the DPPH* reaching a steady state immediately. Rosmarinic acid and δ-tocopherol reacted a little slower and reached a steady state within 30 min. The remaining compounds reacted more progressively with the DPPH* reaching a steady state from 1 to 6 h. Caffeic acid, gentisic acid and gallic acid showed the highest antiradical activities with a stoichiometry of 4 to 6 reduced DPPH* molecules per molecule of antioxidant. Vanillin, phenol, γ-resorcylic acid and vanillic acid were found to be poor antiradical compounds. The stoichiometry for the other 13 phenolic compounds varied from one to three reduced DPPH* molecules per molecule of antioxidant. Possible mechanisms are proposed to explain the experimental results.

18,907 citations

Journal ArticleDOI
TL;DR: The factors underlying the influence of the different classes of polyphenols in enhancing their resistance to oxidation are discussed and support the contention that the partition coefficients of the flavonoids as well as their rates of reaction with the relevant radicals define the antioxidant activities in the lipophilic phase.

8,513 citations

Journal ArticleDOI
TL;DR: Methods available for the measurement of antioxidant capacity are reviewed, presenting the general chemistry underlying the assays, the types of molecules detected, and the most important advantages and shortcomings of each method.
Abstract: Methods available for the measurement of antioxidant capacity are reviewed, presenting the general chemistry underlying the assays, the types of molecules detected, and the most important advantages and shortcomings of each method. This overview provides a basis and rationale for developing standardized antioxidant capacity methods for the food, nutraceutical, and dietary supplement industries. From evaluation of data presented at the First International Congress on Antioxidant Methods in 2004 and in the literature, as well as consideration of potential end uses of antioxidants, it is proposed that procedures and applications for three assays be considered for standardization: the oxygen radical absorbance capacity (ORAC) assay, the Folin-Ciocalteu method, and possibly the Trolox equivalent antioxidant capacity (TEAC) assay. ORAC represent a hydrogen atom transfer (HAT) reaction mechanism, which is most relevant to human biology. The Folin-Ciocalteu method is an electron transfer (ET) based assay and gives reducing capacity, which has normally been expressed as phenolic contents. The TEAC assay represents a second ET-based method. Other assays may need to be considered in the future as more is learned about some of the other radical sources and their importance to human biology.

4,580 citations

Journal ArticleDOI
TL;DR: An overview of the nutritional effects of the main groups of polyphenolic compounds, including their metabolism, effects on nutrient bioavailability, and antioxidant activity, is offered, as well as a brief description of the chemistry ofpolyphenols and their occurrence in plant foods.
Abstract: Polyphenols constitute one of the most numerous and ubiquitous groups of plant metabolites and are an integral part of both human and animal diets. Ranging from simple phenolic molecules to highly polymerized compounds with molecular weights of greater than 30,000 Da, the occurrence of this complex group of substances in plant foods is extremely variable. Polyphenols traditionally have been considered antinutrients by animal nutritionists, because of the adverse effect of tannins, one type of polyphenol, on protein digestibility. However, recent interest in food phenolics has increased greatly, owing to their antioxidant capacity (free radical scavenging and metal chelating activities) and their possible beneficial implications in human health, such as in the treatment and prevention of cancer, cardiovascular disease, and other pathologies. Much of the literature refers to a single group of plant phenolics, the flavonoids. This review offers an overview of the nutritional effects of the main groups of polyphenolic compounds, including their metabolism, effects on nutrient bioavailability, and antioxidant activity, as well as a brief description of the chemistry of polyphenols and their occurrence in plant foods.

3,821 citations

Journal ArticleDOI
TL;DR: Guava fruit extracts were analyzed for antioxidant activity measured in methanol extract and dichloromethane extract (AOAD), ascorbic acid, total phenolics, and total carotenoids contents.

2,737 citations