scispace - formally typeset
Search or ask a question
Author

Marie-France Penet

Bio: Marie-France Penet is an academic researcher from Johns Hopkins University School of Medicine. The author has contributed to research in topics: Cancer & Cancer cell. The author has an hindex of 24, co-authored 67 publications receiving 1772 citations. Previous affiliations of Marie-France Penet include French Institute of Health and Medical Research & Johns Hopkins University.


Papers
More filters
Journal ArticleDOI
TL;DR: These findings demonstrate the coexistence of inflammatory and ischemic lesions and prove the preponderant role of edema in the fatal outcome of experimental cerebral malaria, and improve the understanding of the pathogenesis of cerebral malaria.
Abstract: The first in vivo magnetic resonance study of experimental cerebral malaria is presented. Cerebral involvement is a lethal complication of malaria. To explore the brain of susceptible mice infected with Plasmodium berghei ANKA, multimodal magnetic resonance techniques were applied (imaging, diffusion, perfusion, angiography, spectroscopy). They reveal vascular damage including blood-brain barrier disruption and hemorrhages attributable to inflammatory processes. We provide the first in vivo demonstration for blood-brain barrier breakdown in cerebral malaria. Major edema formation as well as reduced brain perfusion was detected and is accompanied by an ischemic metabolic profile with reduction of high-energy phosphates and elevated brain lactate. In addition, angiography supplies compelling evidence for major hemodynamics dysfunction. Actually, edema further worsens ischemia by compressing cerebral arteries, which subsequently leads to a collapse of the blood flow that ultimately represents the cause of death. These findings demonstrate the coexistence of inflammatory and ischemic lesions and prove the preponderant role of edema in the fatal outcome of experimental cerebral malaria. They improve our understanding of the pathogenesis of cerebral malaria and may provide the necessary noninvasive surrogate markers for quantitative monitoring of treatment.

158 citations

Journal ArticleDOI
TL;DR: Evidence that HOXB7 overexpression renders MCF-7 cells resistant to tamoxifen via cross-talk between receptor tyrosine kinases and ERα signaling is provided, suggesting that HOxB7 acts as a key regulator, orchestrating a major group of target molecules in the oncogenic hierarchy.
Abstract: Multiple factors including long-term treatment with tamoxifen are involved in the development of selective estrogen receptor (ER) modulator resistance in ERα-positive breast cancer. Many underlying molecular events that confer resistance are known but a unifying theme is yet to be revealed. In this report, we provide evidence that HOXB7 overexpression renders MCF-7 cells resistant to tamoxifen via cross-talk between receptor tyrosine kinases and ERα signaling. HOXB7 is an ERα-responsive gene. Extended treatment of MCF-7 cells with tamoxifen resulted in progressively increasing levels of HOXB7 expression, along with EGFR and EGFR ligands. Up-regulation of EGFR occurs through direct binding of HOXB7 to the EGFR promoter, enhancing transcriptional activity. Finally, higher expression levels of HOXB7 in the tumor significantly correlated with poorer disease-free survival in ERα-positive patients with breast cancer on adjuvant tamoxifen monotherapy. These studies suggest that HOXB7 acts as a key regulator, orchestrating a major group of target molecules in the oncogenic hierarchy. Functional antagonism of HOXB7 could circumvent tamoxifen resistance.

114 citations

Journal ArticleDOI
28 Aug 2012-PLOS ONE
TL;DR: Investigation of the effect of hypoxia on CD44 and two of its isoforms in MDA-MB-231 and SUM-149 triple negative human breast cancer cells and Mda- MB-231 tumors identified HIF-1α as a regulator of CD44 that increased the number ofCD44 molecules and the percentage of CD 44 positive cells expressing variant exons v6 and v7/8 in breast cancer Cells under hypoxic conditions.
Abstract: Background The CD44 transmembrane glycoproteins play multifaceted roles in tumor progression and metastasis. CD44 expression has also been associated with stem-like breast cancer cells. Hypoxia commonly occurs in tumors and is a major cause of radiation and chemo-resistance. Hypoxia is known to inhibit differentiation and facilitates invasion and metastasis. Here we have investigated the effect of hypoxia on CD44 and two of its isoforms in MDA-MB-231 and SUM-149 triple negative human breast cancer cells and MDA-MB-231 tumors using imaging and molecular characterization. Methods and Findings The roles of hypoxia and hypoxia inducible factor (HIF) in regulating the expression of CD44 and its variant isoforms (CD44v6, CD44v7/8) were investigated in human breast cancer cells, by quantitative real-time polymerase chain reaction (qRT-PCR) to determine mRNA levels, and fluorescence associated cell sorting (FACS) to determine cell surface expression of CD44, under normoxic and hypoxic conditions. In vivo imaging studies with tumor xenografts derived from MDA-MD-231 cells engineered to express tdTomato red fluorescence protein under regulation of hypoxia response elements identified co-localization between hypoxic fluorescent regions and increased concentration of 125I-radiolabeled CD44 antibody. Conclusions Our data identified HIF-1α as a regulator of CD44 that increased the number of CD44 molecules and the percentage of CD44 positive cells expressing variant exons v6 and v7/8 in breast cancer cells under hypoxic conditions. Data from these cell studies were further supported by in vivo observations that hypoxic tumor regions contained cells with a higher concentration of CD44 expression.

114 citations

Journal ArticleDOI
TL;DR: It is found that Vanin-1–/– mice better controlled inflammatory reaction and intestinal injury in both experiments, suggesting that one cysteamine function is to upregulate inflammation.
Abstract: Vanin-1 is a membrane-anchored pantetheinase highly expressed in the gut and liver. It hydrolyzes pantetheine to pantothenic acid (vitamin B5) and the low-molecular-weight thiol cysteamine. The latter is believed to be a key regulating factor of several essential metabolic pathways, acting through sulfhydryl-disulfide exchange reactions between sulfhydryl groups of the enzymes and the oxidized form, cystamine. Its physiological importance remains to be elucidated, however. To explore this point, we developed Vanin-1–deficient mice that lack free cysteamine. We examined the susceptibility of deficient mice to intestinal inflammation, either acute (NSAID administration) or chronic (Schistosoma infection). We found that Vanin-1–/– mice better controlled inflammatory reaction and intestinal injury in both experiments. This protection was associated with increased γ-glutamylcysteine synthetase activity and increased stores of reduced glutathione, as well as reduced inflammatory cell activation in inflamed tissues. Oral administration of cystamine reversed all aspects of the deficient phenotype. These findings suggest that one cysteamine function is to upregulate inflammation. Consequently, the pantetheinase activity of Vanin-1 molecule could be a target for a new anti-inflammatory strategy.

108 citations

Journal ArticleDOI
09 Aug 2012-ACS Nano
TL;DR: The nanoplex platform described can be easily modified and applied to different cancers, receptors, and pathways to achieve theranostic imaging, as a single agent or in combination with other treatment modalities.
Abstract: Theranostic imaging, where diagnosis is combined with therapy, is particularly suitable for a disease that is as complex as cancer, especially now that genomic and proteomic profiling can provide an extensive “fingerprint” of each tumor. With such information, theranostic agents can be designed to personalize treatment and minimize damage to normal tissue. Here we have developed a nanoplex platform for theranostic imaging of prostate cancer (PCa). In these proof-of-principle studies, a therapeutic nanoplex containing multimodal imaging reporters was targeted to prostate-specific membrane antigen (PSMA), which is expressed on the cell surface of castrate-resistant PCa. The nanoplex was designed to deliver small interfering RNA (siRNA) along with a prodrug enzyme to PSMA-expressing tumors. Each component of the nanoplex was carefully selected to evaluate its diagnostic aspect of PSMA imaging and its therapeutic aspects of siRNA-mediated down-regulation of a target gene and the conversion of a prodrug to cyt...

106 citations


Cited by
More filters
Journal Article

1,633 citations

Journal ArticleDOI
TL;DR: The structure of the liganded VDR/RXR complex was recently characterized using cryoelectron microscopy, X-ray scattering, and hydrogen deuterium exchange, which will result in a more complete understanding of VDR coactivator interactions, thus facilitating cell and gene specific clinical applications.
Abstract: 1,25-Dihydroxvitamin D3 [1,25(OH)2D3] is the hormonally active form of vitamin D. The genomic mechanism of 1,25(OH)2D3 action involves the direct binding of the 1,25(OH)2D3 activated vitamin D receptor/retinoic X receptor (VDR/RXR) heterodimeric complex to specific DNA sequences. Numerous VDR co-regulatory proteins have been identified, and genome-wide studies have shown that the actions of 1,25(OH)2D3 involve regulation of gene activity at a range of locations many kilobases from the transcription start site. The structure of the liganded VDR/RXR complex was recently characterized using cryoelectron microscopy, X-ray scattering, and hydrogen deuterium exchange. These recent technological advances will result in a more complete understanding of VDR coactivator interactions, thus facilitating cell and gene specific clinical applications. Although the identification of mechanisms mediating VDR-regulated transcription has been one focus of recent research in the field, other topics of fundamental importance include the identification and functional significance of proteins involved in the metabolism of vitamin D. CYP2R1 has been identified as the most important 25-hydroxylase, and a critical role for CYP24A1 in humans was noted in studies showing that inactivating mutations in CYP24A1 are a probable cause of idiopathic infantile hypercalcemia. In addition, studies using knockout and transgenic mice have provided new insight on the physiological role of vitamin D in classical target tissues as well as evidence of extraskeletal effects of 1,25(OH)2D3 including inhibition of cancer progression, effects on the cardiovascular system, and immunomodulatory effects in certain autoimmune diseases. Some of the mechanistic findings in mouse models have also been observed in humans. The identification of similar pathways in humans could lead to the development of new therapies to prevent and treat disease.

1,135 citations

Journal ArticleDOI
TL;DR: An overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPAR α target genes is presented.
Abstract: The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well.

1,037 citations

Journal ArticleDOI
TL;DR: This review of molecular imaging of intact living subjects focuses specifically on small molecules, peptides, aptamers, engineered proteins, and nanoparticles and cites examples of how molecular imaging is being applied in oncology, neuroscience, cardiology, gene therapy, cell tracking, and theranostics.
Abstract: Molecular imaging is revolutionizing the way we study the inner workings of the human body, diagnose diseases, approach drug design, and assess therapies. The field as a whole is making possible the visualization of complex biochemical processes involved in normal physiology and disease states, in real time, in living cells, tissues, and intact subjects. In this review, we focus specifically on molecular imaging of intact living subjects. We provide a basic primer for those who are new to molecular imaging, and a resource for those involved in the field. We begin by describing classical molecular imaging techniques together with their key strengths and limitations, after which we introduce some of the latest emerging imaging modalities. We provide an overview of the main classes of molecular imaging agents (i.e., small molecules, peptides, aptamers, engineered proteins, and nanoparticles) and cite examples of how molecular imaging is being applied in oncology, neuroscience, cardiology, gene therapy, cell tracking, and theranostics (therapy combined with diagnostics). A step-by-step guide to answering biological and/or clinical questions using the tools of molecular imaging is also provided. We conclude by discussing the grand challenges of the field, its future directions, and enormous potential for further impacting how we approach research and medicine.

890 citations

Journal ArticleDOI
TL;DR: The progress made to date and the remaining challenges in bringing CAF-targeted therapies to the clinic are highlighted and the relevant translational advances and potential therapeutic strategies that target CAFs for cancer treatment are highlighted.
Abstract: Current paradigms of cancer-centric therapeutics are usually not sufficient to eradicate the malignancy, as the cancer stroma may prompt tumour relapse and therapeutic resistance. Among all the stromal cells that populate the tumour microenvironment, cancer-associated fibroblasts (CAFs) are the most abundant and are critically involved in cancer progression. CAFs regulate the biology of tumour cells and other stromal cells via cell–cell contact, releasing numerous regulatory factors and synthesizing and remodelling the extracellular matrix, and thus these cells affect cancer initiation and development. The recent characterization of CAFs based on specific cell surface markers not only deepens our insight into their phenotypic heterogeneity and functional diversity but also brings CAF-targeting therapies for cancer treatment onto the agenda. In this Review, we discuss the current knowledge of biological hallmarks, cellular origins, phenotypical plasticity and functional heterogeneity of CAFs and underscore their contribution to cancer progression. Moreover, we highlight relevant translational advances and potential therapeutic strategies that target CAFs for cancer treatment. Cancer-associated fibroblasts (CAFs) are often the most abundant cell type in the tumour microenvironment. Here, Song and colleagues discuss how to target or harness these cells for cancer therapy. They highlight the progress made to date and the remaining challenges in bringing CAF-targeted therapies to the clinic.

879 citations