scispace - formally typeset
Search or ask a question
Author

Marie J. J. Huysman

Bio: Marie J. J. Huysman is an academic researcher from Ghent University. The author has contributed to research in topics: Phaeodactylum tricornutum & Thalassiosira pseudonana. The author has an hindex of 12, co-authored 19 publications receiving 1915 citations. Previous affiliations of Marie J. J. Huysman include Flanders Institute for Biotechnology & University of Paris.

Papers
More filters
Journal ArticleDOI
13 Nov 2008-Nature
TL;DR: Analysis of molecular divergence compared with yeasts and metazoans reveals rapid rates of gene diversification in diatoms, and documents the presence of hundreds of genes from bacteria, likely to provide novel possibilities for metabolite management and for perception of environmental signals.
Abstract: Diatoms are photosynthetic secondary endosymbionts found throughout marine and freshwater environments, and are believed to be responsible for around one- fifth of the primary productivity on Earth(1,2). The genome sequence of the marine centric diatom Thalassiosira pseudonana was recently reported, revealing a wealth of information about diatom biology(3-5). Here we report the complete genome sequence of the pennate diatom Phaeodactylum tricornutum and compare it with that of T. pseudonana to clarify evolutionary origins, functional significance and ubiquity of these features throughout diatoms. In spite of the fact that the pennate and centric lineages have only been diverging for 90 million years, their genome structures are dramatically different and a substantial fraction of genes (similar to 40%) are not shared by these representatives of the two lineages. Analysis of molecular divergence compared with yeasts and metazoans reveals rapid rates of gene diversification in diatoms. Contributing factors include selective gene family expansions, differential losses and gains of genes and introns, and differential mobilization of transposable elements. Most significantly, we document the presence of hundreds of genes from bacteria. More than 300 of these gene transfers are found in both diatoms, attesting to their ancient origins, and many are likely to provide novel possibilities for metabolite management and for perception of environmental signals. These findings go a long way towards explaining the incredible diversity and success of the diatoms in contemporary oceans.

1,500 citations

Journal ArticleDOI
TL;DR: It is demonstrated that diatom-specific cyclin 2 (dsCYC2) in Phaeodactylum tricornutum displays a transcriptional peak within 15 min after light exposure, long before the onset of cell division.
Abstract: Cell division in photosynthetic organisms is tightly regulated by light. Although the light dependency of the onset of the cell cycle has been well characterized in various phototrophs, little is known about the cellular signaling cascades connecting light perception to cell cycle activation and progression. Here, we demonstrate that diatom-specific cyclin 2 (dsCYC2) in Phaeodactylum tricornutum displays a transcriptional peak within 15 min after light exposure, long before the onset of cell division. The product of dsCYC2 binds to the cyclin-dependent kinase CDKA1 and can complement G1 cyclin-deficient yeast. Consistent with the role of dsCYC2 in controlling a G1-to-S light-dependent cell cycle checkpoint, dsCYC2 silencing decreases the rate of cell division in diatoms exposed to light-dark cycles but not to constant light. Transcriptional induction of dsCYC2 is triggered by blue light in a fluence rate-dependent manner. Consistent with this, dsCYC2 is a transcriptional target of the blue light sensor AUREOCHROME1a, which functions synergistically with the basic leucine zipper (bZIP) transcription factor bZIP10 to induce dsCYC2 transcription. The functional characterization of a cyclin whose transcription is controlled by light and whose activity connects light signaling to cell cycle progression contributes significantly to our understanding of the molecular mechanisms underlying light-dependent cell cycle onset in diatoms.

119 citations

Journal ArticleDOI
TL;DR: It is shown that two marine diatom species, Phaeodactylum tricornutum and Thalassiosira pseudonana, possess a bona fide red/far-red light sensing phytochrome (DPH) that uses biliverdin as a chromophore and displays accentuated red-shifted absorbance peaks compared with other characterized plant and algal phy tochromes.
Abstract: The absorption of visible light in aquatic environments has led to the common assumption that aquatic organisms sense and adapt to penetrative blue/green light wavelengths but show little or no response to the more attenuated red/far-red wavelengths. Here, we show that two marine diatom species, Phaeodactylum tricornutum and Thalassiosira pseudonana, possess a bona fide red/far-red light sensing phytochrome (DPH) that uses biliverdin as a chromophore and displays accentuated red-shifted absorbance peaks compared with other characterized plant and algal phytochromes. Exposure to both red and far-red light causes changes in gene expression in P. tricornutum, and the responses to far-red light disappear in DPH knockout cells, demonstrating that P. tricornutum DPH mediates far-red light signaling. The identification of DPH genes in diverse diatom species widely distributed along the water column further emphasizes the ecological significance of far-red light sensing, raising questions about the sources of far-red light. Our analyses indicate that, although far-red wavelengths from sunlight are only detectable at the ocean surface, chlorophyll fluorescence and Raman scattering can generate red/far-red photons in deeper layers. This study opens up novel perspectives on phytochrome-mediated far-red light signaling in the ocean and on the light sensing and adaptive capabilities of marine phototrophs.

100 citations

Journal ArticleDOI
TL;DR: The recent genome sequencing of Thalassiosira pseudonana and Phaeodactylum tricornutum allows us to explore the molecular conservation of cell cycle regulation in diatoms as discussed by the authors.
Abstract: Despite the enormous importance of diatoms in aquatic ecosystems and their broad industrial potential, little is known about their life cycle control. Diatoms typically inhabit rapidly changing and unstable environments, suggesting that cell cycle regulation in diatoms must have evolved to adequately integrate various environmental signals. The recent genome sequencing of Thalassiosira pseudonana and Phaeodactylum tricornutum allows us to explore the molecular conservation of cell cycle regulation in diatoms. By profile-based annotation of cell cycle genes, counterparts of conserved as well as new regulators were identified in T. pseudonana and P. tricornutum. In particular, the cyclin gene family was found to be expanded extensively compared to that of other eukaryotes and a novel type of cyclins was discovered, the diatom-specific cyclins. We established a synchronization method for P. tricornutum that enabled assignment of the different annotated genes to specific cell cycle phase transitions. The diatom-specific cyclins are predominantly expressed at the G1-to-S transition and some respond to phosphate availability, hinting at a role in connecting cell division to environmental stimuli. The discovery of highly conserved and new cell cycle regulators suggests the evolution of unique control mechanisms for diatom cell division, probably contributing to their ability to adapt and survive under highly fluctuating environmental conditions.

98 citations

Journal ArticleDOI
TL;DR: It is found that chloroplasts divide and relocate during the S/G2 phase, after which a girdle band is deposited to accommodate cell growth, which confirms that chloroplast biogenesis in S. robusta is tightly regulated.
Abstract: Despite the growing interest in diatom genomics, detailed time series of gene expression in relation to key cellular processes are still lacking. Here, we investigated the relationships between the cell cycle and chloroplast development in the pennate diatom Seminavis robusta. This diatom possesses two chloroplasts with a well-orchestrated developmental cycle, common to many pennate diatoms. By assessing the effects of induced cell cycle arrest with microscopy and flow cytometry, we found that division and reorganization of the chloroplasts are initiated only after S-phase progression. Next, we quantified the expression of the S. robusta FtsZ homolog to address the division status of chloroplasts during synchronized growth and monitored microscopically their dynamics in relation to nuclear division and silicon deposition. We show that chloroplasts divide and relocate during the S/G2 phase, after which a girdle band is deposited to accommodate cell growth. Synchronized cultures of two genotypes were subsequently used for a cDNA-amplified fragment length polymorphism-based genome-wide transcript profiling, in which 917 reproducibly modulated transcripts were identified. We observed that genes involved in pigment biosynthesis and coding for light-harvesting proteins were up-regulated during G2/M phase and cell separation. Light and cell cycle progression were both found to affect fucoxanthin-chlorophyll a/c-binding protein expression and accumulation of fucoxanthin cell content. Because chloroplasts elongate at the stage of cytokinesis, cell cycle-modulated photosynthetic gene expression and synthesis of pigments in concert with cell division might balance chloroplast growth, which confirms that chloroplast biogenesis in S. robusta is tightly regulated.

67 citations


Cited by
More filters
Journal ArticleDOI
13 Aug 2010-Science
TL;DR: Although microalgae are not yet produced at large scale for bulk applications, recent advances—particularly in the methods of systems biology, genetic engineering, and biorefining—present opportunities to develop this process in a sustainable and economical way within the next 10 to 15 years.
Abstract: Microalgae are considered one of the most promising feedstocks for biofuels. The productivity of these photosynthetic microorganisms in converting carbon dioxide into carbon-rich lipids, only a step or two away from biodiesel, greatly exceeds that of agricultural oleaginous crops, without competing for arable land. Worldwide, research and demonstration programs are being carried out to develop the technology needed to expand algal lipid production from a craft to a major industrial process. Although microalgae are not yet produced at large scale for bulk applications, recent advances—particularly in the methods of systems biology, genetic engineering, and biorefining—present opportunities to develop this process in a sustainable and economical way within the next 10 to 15 years.

1,712 citations

Journal ArticleDOI
TL;DR: Potential avenues of genetic engineering that may be undertaken in order to improve microalgae as a biofuel platform for the production of biohydrogen, starch-derived alcohols, diesel fuel surrogates, and/or alkanes are focused on.
Abstract: There are currently intensive global research efforts aimed at increasing and modifying the accumulation of lipids, alcohols, hydrocarbons, polysaccharides, and other energy storage compounds in photosynthetic organisms, yeast, and bacteria through genetic engineering. Many improvements have been realized, including increased lipid and carbohydrate production, improved H2 yields, and the diversion of central metabolic intermediates into fungible biofuels. Photosynthetic microorganisms are attracting considerable interest within these efforts due to their relatively high photosynthetic conversion efficiencies, diverse metabolic capabilities, superior growth rates, and ability to store or secrete energy-rich hydrocarbons. Relative to cyanobacteria, eukaryotic microalgae possess several unique metabolic attributes of relevance to biofuel production, including the accumulation of significant quantities of triacylglycerol; the synthesis of storage starch (amylopectin and amylose), which is similar to that found in higher plants; and the ability to efficiently couple photosynthetic electron transport to H2 production. Although the application of genetic engineering to improve energy production phenotypes in eukaryotic microalgae is in its infancy, significant advances in the development of genetic manipulation tools have recently been achieved with microalgal model systems and are being used to manipulate central carbon metabolism in these organisms. It is likely that many of these advances can be extended to industrially relevant organisms. This review is focused on potential avenues of genetic engineering that may be undertaken in order to improve microalgae as a biofuel platform for the production of biohydrogen, starch-derived alcohols, diesel fuel surrogates, and/or alkanes.

1,079 citations

Journal ArticleDOI
Patrick J. Keeling1, Patrick J. Keeling2, Fabien Burki1, Heather M. Wilcox3, Bassem Allam4, Eric E. Allen5, Linda A. Amaral-Zettler6, Linda A. Amaral-Zettler7, E. Virginia Armbrust8, John M. Archibald9, John M. Archibald2, Arvind K. Bharti10, Callum J. Bell10, Bank Beszteri11, Kay D. Bidle12, Connor Cameron10, Lisa Campbell13, David A. Caron14, Rose Ann Cattolico8, Jackie L. Collier4, Kathryn J. Coyne15, Simon K. Davy16, Phillipe Deschamps17, Sonya T. Dyhrman18, Bente Edvardsen19, Ruth D. Gates20, Christopher J. Gobler4, Spencer J. Greenwood21, Stephanie Guida10, Jennifer L. Jacobi10, Kjetill S. Jakobsen19, Erick R. James1, Bethany D. Jenkins22, Uwe John11, Matthew D. Johnson23, Andrew R. Juhl18, Anja Kamp24, Anja Kamp25, Laura A. Katz26, Ronald P. Kiene27, Alexander Kudryavtsev28, Alexander Kudryavtsev29, Brian S. Leander1, Senjie Lin30, Connie Lovejoy31, Denis H. Lynn1, Denis H. Lynn32, Adrian Marchetti33, George B. McManus30, Aurora M. Nedelcu34, Susanne Menden-Deuer22, Cristina Miceli35, Thomas Mock36, Marina Montresor37, Mary Ann Moran38, Shauna A. Murray39, Govind Nadathur40, Satoshi Nagai, Peter B. Ngam10, Brian Palenik5, Jan Pawlowski29, Giulio Petroni41, Gwenael Piganeau42, Matthew C. Posewitz43, Karin Rengefors44, Giovanna Romano37, Mary E. Rumpho30, Tatiana A. Rynearson22, Kelly B. Schilling10, Declan C. Schroeder, Alastair G. B. Simpson9, Alastair G. B. Simpson2, Claudio H. Slamovits9, Claudio H. Slamovits2, David Roy Smith45, G. Jason Smith46, Sarah R. Smith5, Heidi M. Sosik23, Peter Stief25, Edward C. Theriot47, Scott N. Twary48, Pooja E. Umale10, Daniel Vaulot49, Boris Wawrik50, Glen L. Wheeler51, William H. Wilson52, Yan Xu53, Adriana Zingone37, Alexandra Z. Worden3, Alexandra Z. Worden2 
University of British Columbia1, Canadian Institute for Advanced Research2, Monterey Bay Aquarium Research Institute3, Stony Brook University4, University of California, San Diego5, Brown University6, Marine Biological Laboratory7, University of Washington8, Dalhousie University9, National Center for Genome Resources10, Alfred Wegener Institute for Polar and Marine Research11, Rutgers University12, Texas A&M University13, University of Southern California14, University of Delaware15, Victoria University of Wellington16, University of Paris-Sud17, Columbia University18, University of Oslo19, University of Hawaii at Manoa20, University of Prince Edward Island21, University of Rhode Island22, Woods Hole Oceanographic Institution23, Jacobs University Bremen24, Max Planck Society25, Smith College26, University of South Alabama27, Saint Petersburg State University28, University of Geneva29, University of Connecticut30, Laval University31, University of Guelph32, University of North Carolina at Chapel Hill33, University of New Brunswick34, University of Camerino35, University of East Anglia36, Stazione Zoologica Anton Dohrn37, University of Georgia38, University of Technology, Sydney39, University of Puerto Rico40, University of Pisa41, Centre national de la recherche scientifique42, Colorado School of Mines43, Lund University44, University of Western Ontario45, California State University46, University of Texas at Austin47, Los Alamos National Laboratory48, Pierre-and-Marie-Curie University49, University of Oklahoma50, Plymouth Marine Laboratory51, Bigelow Laboratory For Ocean Sciences52, Princeton University53
TL;DR: In this paper, the authors describe a resource of 700 transcriptomes from marine microbial eukaryotes to help understand their role in the world's oceans and their biology, evolution, and ecology.
Abstract: Current sampling of genomic sequence data from eukaryotes is relatively poor, biased, and inadequate to address important questions about their biology, evolution, and ecology; this Community Page describes a resource of 700 transcriptomes from marine microbial eukaryotes to help understand their role in the world's oceans.

852 citations

Journal ArticleDOI
13 May 2009-Nature
TL;DR: Marine diatoms rose to prominence about 100 million years ago and today generate most of the organic matter that serves as food for life in the sea.
Abstract: Marine diatoms rose to prominence about 100 million years ago and today generate most of the organic matter that serves as food for life in the sea. They exist in a dilute world where compounds essential for growth are recycled and shared, and they greatly influence global climate, atmospheric carbon dioxide concentration and marine ecosystem function. How these essential organisms will respond to the rapidly changing conditions in today's oceans is critical for the health of the environment and is being uncovered by studies of their genomes.

809 citations

Journal ArticleDOI
TL;DR: Deciphering the languages of diatoms and bacteria and how they interact will inform the understanding of the role these organisms have in shaping the ocean and how these interactions may change in future oceans.
Abstract: SUMMARY Diatoms and bacteria have cooccurred in common habitats for hundreds of millions of years, thus fostering specific associations and interactions with global biogeochemical consequences. Diatoms are responsible for one-fifth of the photosynthesis on Earth, while bacteria remineralize a large portion of this fixed carbon in the oceans. Through their coexistence, diatoms and bacteria cycle nutrients between oxidized and reduced states, impacting bioavailability and ultimately feeding higher trophic levels. Here we present an overview of how diatoms and bacteria interact and the implications of these interactions. We emphasize that heterotrophic bacteria in the oceans that are consistently associated with diatoms are confined to two phyla. These consistent bacterial associations result from encounter mechanisms that occur within a microscale environment surrounding a diatom cell. We review signaling mechanisms that occur in this microenvironment to pave the way for specific interactions. Finally, we discuss known interactions between diatoms and bacteria and exciting new directions and research opportunities in this field. Throughout the review, we emphasize new technological advances that will help in the discovery of new interactions. Deciphering the languages of diatoms and bacteria and how they interact will inform our understanding of the role these organisms have in shaping the ocean and how these interactions may change in future oceans.

750 citations