scispace - formally typeset
Search or ask a question
Author

Marie-Pierre Egloff

Bio: Marie-Pierre Egloff is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: RNA & RNA polymerase. The author has an hindex of 15, co-authored 18 publications receiving 2263 citations. Previous affiliations of Marie-Pierre Egloff include Aix-Marseille University & University of Provence.

Papers
More filters
Journal ArticleDOI
TL;DR: The results provide a structural basis for the rational design of drugs against the emerging flaviviruses and suggest that the latter is a specific cap‐binding site.
Abstract: Viruses represent an attractive system with which to study the molecular basis of mRNA capping and its relation to the RNA transcription machinery. The RNA-dependent RNA polymerase NS5 of flaviviruses presents a characteristic motif of S-adenosyl-l-methionine-dependent methyltransferases at its N-terminus, and polymerase motifs at its C-terminus. The crystal structure of an N-terminal fragment of Dengue virus type 2 NS5 is reported at 2.4 Å resolution. We show that this NS5 domain includes a typical methyltransferase core and exhibits a (nucleoside-2′-O-)-methyltransferase activity on capped RNA. The structure of a ternary complex comprising S-adenosyl-l-homocysteine and a guanosine triphosphate (GTP) analogue shows that 54 amino acids N-terminal to the core provide a novel GTP-binding site that selects guanine using a previously unreported mechanism. Binding studies using GTP- and RNA cap-analogues, as well as the spatial arrangement of the methyltransferase active site relative to the GTP-binding site, suggest that the latter is a specific cap-binding site. As RNA capping is an essential viral function, these results provide a structural basis for the rational design of drugs against the emerging flaviviruses.

562 citations

Journal ArticleDOI
TL;DR: The structure of the NS5 nuclear localization sequences, previously thought to fold into a separate domain, form an integral part of the polymerase subdomains and reveals the presence of two zinc ion binding motifs, which should inform and accelerate the structure-based design of antiviral compounds against dengue virus.
Abstract: Dengue fever, a neglected emerging disease for which no vaccine or antiviral agents exist at present, is caused by dengue virus, a member of the Flavivirus genus, which includes several important human pathogens, such as yellow fever and West Nile viruses. The NS5 protein from dengue virus is bifunctional and contains 900 amino acids. The S-adenosyl methionine transferase activity resides within its N-terminal domain, and residues 270 to 900 form the RNA-dependent RNA polymerase (RdRp) catalytic domain. Viral replication begins with the synthesis of minus-strand RNA from the dengue virus positive-strand RNA genome, which is subsequently used as a template for synthesizing additional plus-strand RNA genomes. This essential function for the production of new viral particles is catalyzed by the NS5 RdRp. Here we present a high-throughput in vitro assay partly recapitulating this activity and the crystallographic structure of an enzymatically active fragment of the dengue virus RdRp refined at 1.85-A resolution. The NS5 nuclear localization sequences, previously thought to fold into a separate domain, form an integral part of the polymerase subdomains. The structure also reveals the presence of two zinc ion binding motifs. In the absence of a template strand, a chain-terminating nucleoside analogue binds to the priming loop site. These results should inform and accelerate the structure-based design of antiviral compounds against dengue virus.

383 citations

Journal ArticleDOI
TL;DR: In this paper, the crystal structure of the SARS-CoV macro domain was determined at 1.8-Angstroms resolution in complex with ADP-ribose.
Abstract: Macro domains constitute a protein module family found associated with specific histones and proteins involved in chromatin metabolism. In addition, a small number of animal RNA viruses, such as corona- and toroviruses, alphaviruses, and hepatitis E virus, encode macro domains for which, however, structural and functional information is extremely limited. Here, we characterized the macro domains from hepatitis E virus, Semliki Forest virus, and severe acute respiratory syndrome coronavirus (SARS-CoV). The crystal structure of the SARS-CoV macro domain was determined at 1.8-Angstroms resolution in complex with ADP-ribose. Information derived from structural, mutational, and sequence analyses suggests a close phylogenetic and, most probably, functional relationship between viral and cellular macro domain homologs. The data revealed that viral macro domains have relatively poor ADP-ribose 1"-phosphohydrolase activities (which were previously proposed to be their biologically relevant function) but bind efficiently free and poly(ADP-ribose) polymerase 1-bound poly(ADP-ribose) in vitro. Collectively, these results suggest to further evaluate the role of viral macro domains in host response to viral infection.

231 citations

Journal ArticleDOI
TL;DR: The Flaviv virus RdRp domain structure determined here should facilitate both the design of anti-Flavivirus drugs and structure-function studies of the Flavivirus replication complex in which the multifunctional NS5 protein plays a central role.

223 citations

Journal ArticleDOI
TL;DR: The structure of recombinant human gastric lipase at 3.0-Å resolution is reported, the first structure to be described within the mammalian acid lipase family, and possible explanations for some previously reported mutations leading to the cholesterol ester storage disease are given.

162 citations


Cited by
More filters
Book ChapterDOI
TL;DR: A brief introduction to coronaviruses is provided discussing their replication and pathogenicity, and current prevention and treatment strategies, and the outbreaks of the highly pathogenic Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the recently identified Middle Eastern Respiratories Syndrome Cor onavirus
Abstract: Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are characterized by club-like spikes that project from their surface, an unusually large RNA genome, and a unique replication strategy. Coronaviruses cause a variety of diseases in mammals and birds ranging from enteritis in cows and pigs and upper respiratory disease in chickens to potentially lethal human respiratory infections. Here we provide a brief introduction to coronaviruses discussing their replication and pathogenicity, and current prevention and treatment strategies. We also discuss the outbreaks of the highly pathogenic Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the recently identified Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV).

2,846 citations

Journal ArticleDOI
TL;DR: The concerted and coordinated response that contained SARS is a triumph for global public health and provides a new paradigm for the detection and control of future emerging infectious disease threats.
Abstract: The severe acute respiratory syndrome (SARS) is responsible for the first pandemic of the 21st century. Within months after its emergence in Guangdong Province in mainland China, it had affected more than 8000 patients and caused 774 deaths in 26 countries on five continents. It illustrated dramatically the potential of air travel and globalization for the dissemination of an emerging infectious disease and highlighted the need for a coordinated global response to contain such disease threats. We review the cause, epidemiology, and clinical features of the disease.

2,167 citations

01 Jan 2007
TL;DR: The present research attacked the Flavivirus infection through two mechanisms: Membrane Reorganization and the Compartmentalization and Assembly and Release of Particles from Flaviv virus-infected Cells and Host Resistance to Flaviviral Infection.
Abstract: FLAVIVIRUSES 1103 Background and Classification 1103 Structure and Physical Properties of the Virion 1104 Binding and Entry 1105 Genome Structure 1106 Translation and Proteolytic Processing 1107 Features of the Structural Proteins 1108 Features of the Nonstructural Proteins 1109 RNA Replication 1112 Membrane Reorganization and the Compartmentalization of Flavivirus Replication 1112 Assembly and Release of Particles from Flavivirus-infected Cells 1112 Host Resistance to Flavivirus Infection 1113

1,867 citations

Journal ArticleDOI
TL;DR: The adaptation strategies of the extremophilic xylanases isolated to date and the potential industrial applications of these enzymes will also be presented.
Abstract: Xylanases are hydrolytic enzymes which randomly cleave the β 1,4 backbone of the complex plant cell wall polysaccharide xylan. Diverse forms of these enzymes exist, displaying varying folds, mechanisms of action, substrate specificities, hydrolytic activities (yields, rates and products) and physicochemical characteristics. Research has mainly focused on only two of the xylanase containing glycoside hydrolase families, namely families 10 and 11, yet enzymes with xylanase activity belonging to families 5, 7, 8 and 43 have also been identified and studied, albeit to a lesser extent. Driven by industrial demands for enzymes that can operate under process conditions, a number of extremophilic xylanases have been isolated, in particular those from thermophiles, alkaliphiles and acidiphiles, while little attention has been paid to cold-adapted xylanases. Here, the diverse physicochemical and functional characteristics, as well as the folds and mechanisms of action of all six xylanase containing families will be discussed. The adaptation strategies of the extremophilic xylanases isolated to date and the potential industrial applications of these enzymes will also be presented.

1,584 citations

Journal ArticleDOI
TL;DR: These newly recognized viral enzymes place the mechanism of coronavirus RNA synthesis in a completely new perspective and will be important targets for the design of antiviral strategies aimed at controlling the further spread of SARS-CoV.

1,114 citations