scispace - formally typeset
Search or ask a question
Author

Marie-Pierre Jolly

Bio: Marie-Pierre Jolly is an academic researcher from Siemens. The author has contributed to research in topics: Segmentation & Image segmentation. The author has an hindex of 30, co-authored 111 publications receiving 6445 citations. Previous affiliations of Marie-Pierre Jolly include Ohio State University & Princeton University.


Papers
More filters
Proceedings ArticleDOI
07 Jul 2001
TL;DR: In this paper, the user marks certain pixels as "object" or "background" to provide hard constraints for segmentation, and additional soft constraints incorporate both boundary and region information.
Abstract: In this paper we describe a new technique for general purpose interactive segmentation of N-dimensional images. The user marks certain pixels as "object" or "background" to provide hard constraints for segmentation. Additional soft constraints incorporate both boundary and region information. Graph cuts are used to find the globally optimal segmentation of the N-dimensional image. The obtained solution gives the best balance of boundary and region properties among all segmentations satisfying the constraints. The topology of our segmentation is unrestricted and both "object" and "background" segments may consist of several isolated parts. Some experimental results are presented in the context of photo/video editing and medical image segmentation. We also demonstrate an interesting Gestalt example. A fast implementation of our segmentation method is possible via a new max-flow algorithm.

3,571 citations

Book ChapterDOI
Yuri Boykov1, Marie-Pierre Jolly1
11 Oct 2000
TL;DR: This paper applies the graph cut technique to interactively segment organs in various 2D and 3D medical images by finding the cheapest way to cut the edges in the graph so that the object seeds are completely separated from the background seeds.
Abstract: An N-dimensional image is divided into “object” and “background” segments using a graph cut approach. A graph is formed by connecting all pairs of neighboring image pixels (voxels) by weighted edges. Certain pixels (voxels) have to be a priori identified as object or background seeds providing necessary clues about the image content. Our objective is to find the cheapest way to cut the edges in the graph so that the object seeds are completely separated from the background seeds. If the edge cost is a decreasing function of the local intensity gradient then the minimum cost cut should produce an object/background segmentation with compact boundaries along the high intensity gradient values in the image. An efficient, globally optimal solution is possible via standard min-cut/max-flow algorithms for graphs with two terminals. We applied this technique to interactively segment organs in various 2D and 3D medical images.

298 citations

Journal ArticleDOI
TL;DR: Validation on a consecutive patient data cohort shows that this strategy can perform robust nonrigid registration to align inversion recovery images experiencing significant motion and lead to suppression of motion induced artifacts in the T1 map.
Abstract: Quantification of myocardial T1 relaxation has potential value in the diagnosis of both ischemic and nonischemic cardiomyopathies. Image acquisition using the modified Look-Locker inversion recovery technique is clinically feasible for T1 mapping. However, respiratory motion limits its applicability and degrades the accuracy of T1 estimation. The robust registration of acquired inversion recovery images is particularly challenging due to the large changes in image contrast, especially for those images acquired near the signal null point of the inversion recovery and other inversion times for which there is little tissue contrast. In this article, we propose a novel motion correction algorithm. This approach is based on estimating synthetic images presenting contrast changes similar to the acquired images. The estimation of synthetic images is formulated as a variational energy minimization problem. Validation on a consecutive patient data cohort shows that this strategy can perform robust nonrigid registration to align inversion recovery images experiencing significant motion and lead to suppression of motion induced artifacts in the T1 map.

204 citations

Journal ArticleDOI
TL;DR: A segmentation technique to automatically extract the myocardium in 4D cardiac MR and CT datasets using EM-based region segmentation and Dijkstra active contours using graph cuts, spline fitting, or point pattern matching is described.
Abstract: This paper describes a segmentation technique to automatically extract the myocardium in 4D cardiac MR and CT datasets. The segmentation algorithm is a two step process. The global localization step roughly localizes the left ventricle using techniques such as maximum discrimination, thresholding and connected component analysis. The local deformations step combines EM-based region segmentation and Dijkstra active contours using graph cuts, spline fitting, or point pattern matching. The technique has been tested on a large number of patients and both quantitative and qualitative results are presented.

172 citations

Journal ArticleDOI
TL;DR: The consensus segmentation based on a combination of manual and automated raters were more consistent than any particular rater, even those with manual input, and the consensus is expected to improve with the addition of new automated contributions.

169 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new superpixel algorithm is introduced, simple linear iterative clustering (SLIC), which adapts a k-means clustering approach to efficiently generate superpixels and is faster and more memory efficient, improves segmentation performance, and is straightforward to extend to supervoxel generation.
Abstract: Computer vision applications have come to rely increasingly on superpixels in recent years, but it is not always clear what constitutes a good superpixel algorithm. In an effort to understand the benefits and drawbacks of existing methods, we empirically compare five state-of-the-art superpixel algorithms for their ability to adhere to image boundaries, speed, memory efficiency, and their impact on segmentation performance. We then introduce a new superpixel algorithm, simple linear iterative clustering (SLIC), which adapts a k-means clustering approach to efficiently generate superpixels. Despite its simplicity, SLIC adheres to boundaries as well as or better than previous methods. At the same time, it is faster and more memory efficient, improves segmentation performance, and is straightforward to extend to supervoxel generation.

7,849 citations

Journal ArticleDOI
01 Aug 2004
TL;DR: A more powerful, iterative version of the optimisation of the graph-cut approach is developed and the power of the iterative algorithm is used to simplify substantially the user interaction needed for a given quality of result.
Abstract: The problem of efficient, interactive foreground/background segmentation in still images is of great practical importance in image editing. Classical image segmentation tools use either texture (colour) information, e.g. Magic Wand, or edge (contrast) information, e.g. Intelligent Scissors. Recently, an approach based on optimization by graph-cut has been developed which successfully combines both types of information. In this paper we extend the graph-cut approach in three respects. First, we have developed a more powerful, iterative version of the optimisation. Secondly, the power of the iterative algorithm is used to simplify substantially the user interaction needed for a given quality of result. Thirdly, a robust algorithm for "border matting" has been developed to estimate simultaneously the alpha-matte around an object boundary and the colours of foreground pixels. We show that for moderately difficult examples the proposed method outperforms competitive tools.

5,670 citations

Journal ArticleDOI
TL;DR: This paper investigates two fundamental problems in computer vision: contour detection and image segmentation and presents state-of-the-art algorithms for both of these tasks.
Abstract: This paper investigates two fundamental problems in computer vision: contour detection and image segmentation. We present state-of-the-art algorithms for both of these tasks. Our contour detector combines multiple local cues into a globalization framework based on spectral clustering. Our segmentation algorithm consists of generic machinery for transforming the output of any contour detector into a hierarchical region tree. In this manner, we reduce the problem of image segmentation to that of contour detection. Extensive experimental evaluation demonstrates that both our contour detection and segmentation methods significantly outperform competing algorithms. The automatically generated hierarchical segmentations can be interactively refined by user-specified annotations. Computation at multiple image resolutions provides a means of coupling our system to recognition applications.

5,068 citations

Proceedings Article
23 Dec 2013
TL;DR: In this paper, the gradient of the class score with respect to the input image is computed to compute a class saliency map, which can be used for weakly supervised object segmentation using classification ConvNets.
Abstract: This paper addresses the visualisation of image classification models, learnt using deep Convolutional Networks (ConvNets). We consider two visualisation techniques, based on computing the gradient of the class score with respect to the input image. The first one generates an image, which maximises the class score [5], thus visualising the notion of the class, captured by a ConvNet. The second technique computes a class saliency map, specific to a given image and class. We show that such maps can be employed for weakly supervised object segmentation using classification ConvNets. Finally, we establish the connection between the gradient-based ConvNet visualisation methods and deconvolutional networks [13].

4,959 citations

Journal ArticleDOI
TL;DR: This paper compares the running times of several standard algorithms, as well as a new algorithm that is recently developed that works several times faster than any of the other methods, making near real-time performance possible.
Abstract: Minimum cut/maximum flow algorithms on graphs have emerged as an increasingly useful tool for exactor approximate energy minimization in low-level vision. The combinatorial optimization literature provides many min-cut/max-flow algorithms with different polynomial time complexity. Their practical efficiency, however, has to date been studied mainly outside the scope of computer vision. The goal of this paper is to provide an experimental comparison of the efficiency of min-cut/max flow algorithms for applications in vision. We compare the running times of several standard algorithms, as well as a new algorithm that we have recently developed. The algorithms we study include both Goldberg-Tarjan style "push -relabel" methods and algorithms based on Ford-Fulkerson style "augmenting paths." We benchmark these algorithms on a number of typical graphs in the contexts of image restoration, stereo, and segmentation. In many cases, our new algorithm works several times faster than any of the other methods, making near real-time performance possible. An implementation of our max-flow/min-cut algorithm is available upon request for research purposes.

4,463 citations