scispace - formally typeset
Search or ask a question
Author

Marie Suez

Bio: Marie Suez is an academic researcher from Pierre-and-Marie-Curie University. The author has contributed to research in topics: Population & Abies alba. The author has an hindex of 2, co-authored 3 publications receiving 31 citations. Previous affiliations of Marie Suez include Centre national de la recherche scientifique & Institut national de la recherche agronomique.

Papers
More filters
Journal ArticleDOI
TL;DR: An algorithm to automatically and efficiently genotype microsatellites from a collection of reads sorted by individual, which can be used to genotype any microsatellite locus from any organism and has been tested on 454 pyrosequencing data of several loci from fruit flies and red deers.
Abstract: Microsatellites are widely used in population genetics to uncover recent evolutionary events. They are typically genotyped using capillary sequencer, which capacity is usually limited to 9, at most 12 loci for each run, and which analysis is a tedious task that is performed by hand. With the rise of next-generation sequencing (NGS), a much larger number of loci and individuals are available from sequencing: for example, on a single run of a GS Junior, 28 loci from 96 individuals are sequenced with a 30X cover. We have developed an algorithm to automatically and efficiently genotype microsatellites from a collection of reads sorted by individual (e.g. specific PCR amplifications of a locus or a collection of reads that encompass a locus of interest). As the sequencing and the PCR amplification introduce artefactual insertions or deletions, the set of reads from a single microsatellite allele shows several length variants. The algorithm infers, without alignment, the true unknown allele(s) of each individual from the observed distributions of microsatellites length of all individuals. MicNeSs, a python implementation of the algorithm, can be used to genotype any microsatellite locus from any organism and has been tested on 454 pyrosequencing data of several loci from fruit flies (a model species) and red deers (a nonmodel species). Without any parallelization, it automatically genotypes 22 loci from 441 individuals in 11 hours on a standard computer. The comparison of MicNeSs inferences to the standard method shows an excellent agreement, with some differences illustrating the pros and cons of both methods.

22 citations

Journal ArticleDOI
02 Aug 2013-PLOS ONE
TL;DR: Empirical evidence is provided that prolonged diapause phenotypes can substantially contribute to reproduction and impact temporal genetic structures in wasp populations living in fluctuating environments.
Abstract: Many animal species experiencing spatial or interannual fluctuations of their environment are capable of prolonged diapause, a kind of dormancy that extends over more than one year. Such a prolonged diapause is commonly perceived as a temporal demographic refuge in stochastic environments, but empirical evidence is still lacking of its consequences on temporal population genetic structures. In this long-term study, we investigated how a particular pattern of prolonged diapause may influence the temporal population genetics of the invasive seed-specialized wasp Megastigmus schimitscheki (Hymenoptera: Torymidae) in southeastern France. We characterized the diapause strategy of M. schimitscheki using records of emergence from diapause in 97 larval cohorts, and we conducted a temporal population genetic study on a natural invasive wasp population sampled during ten consecutive years (1999–2008) using polymorphic microsatellite markers. We found that M. schimitscheki can undergo a prolonged diapause of up to five years and displays two main adult emergence peaks after two and four years of diapause. Such a bimodal and atypical pattern did not disrupt temporal gene flow between cohorts produced in even and in odd years during the period of the study. Unexpectedly, we found that this wasp population consisted of two distinct genetic sub-populations that strongly diverged in their diapause strategies, with very few admixed individuals. One of the sub-populations displayed both short and prolonged diapause (2 and 4 years respectively) in equal proportions, whereas the other sub-population displayed mainly short diapause. This study provided empirical evidence that prolonged diapause phenotypes can substantially contribute to reproduction and impact temporal genetic structures. Prolonged diapause is likely to act as both demographic and genetic refuges for insect populations living in fluctuating environments.

11 citations

Journal ArticleDOI
TL;DR: In this article, the authors identify the ecological, climatic, and demographic factors responsible for the genetic diversity patterns of the European silver fir (Abies alba mill.) at its southwestern range margin (Pyrenees Mountains, France, Europe).
Abstract: In a conservation and sustainable management perspective, we identify the ecological, climatic, and demographic factors responsible for the genetic diversity patterns of the European silver fir (Abies alba Mill.) at its southwestern range margin (Pyrenees Mountains, France, Europe). We sampled 45 populations throughout the French Pyrenees and eight neighboring reference populations in the Massif Central, Alps, and Corsica. We genotyped 1,620 individuals at three chloroplast and ten nuclear microsatellite loci. We analyzed within- and among-population genetic diversity using phylogeographic reconstructions, tests of isolation-by-distance, Bayesian population structure inference, modeling of demographic scenarios, and regression analyses of genetic variables with current and past environmental variables. Genetic diversity decreased from east to west suggesting isolation-by-distance from the Alps to the Pyrenees and from the Eastern to the Western Pyrenees. We identified two Pyrenean lineages that diverged from a third Alpine-Corsica-Massif Central lineage 0.8 to 1.1 M years ago and subsequently formed a secondary contact zone in the Central Pyrenees. Population sizes underwent contrasted changes, with a contraction in the west and an expansion in the east. Glacial climate affected the genetic composition of the populations, with the western genetic cluster only observed in locations corresponding to the coldest past climate and highest elevations. The eastern cluster was observed over a larger range of temperatures and elevations. All demographic events shaping the current spatial structure of genetic diversity took place during the Mid-Pleistocene Transition, long before the onset of the Holocene. The Western Pyrenees lineage may require additional conservation efforts, whereas the eastern lineage is well protected in in situ gene conservation units. Due to past climate oscillations and the likely emergence of independent refugia, east-west oriented mountain ranges may be important reservoir of genetic diversity in a context of past and ongoing climate change in Europe.

4 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work profile the expanding suite of genomic methods and platforms compatible with producing genotypes from MIS, considering factors such as development costs and error rates, and considers how genetic monitoring could move beyond genotypes in the future.
Abstract: The decreasing cost and increasing scope and power of emerging genomic technologies are reshaping the field of molecular ecology. However, many modern genomic approaches (e.g., RAD-seq) require large amounts of high-quality template DNA. This poses a problem for an active branch of conservation biology: genetic monitoring using minimally invasive sampling (MIS) methods. Without handling or even observing an animal, MIS methods (e.g., collection of hair, skin, faeces) can provide genetic information on individuals or populations. Such samples typically yield low-quality and/or quantities of DNA, restricting the type of molecular methods that can be used. Despite this limitation, genetic monitoring using MIS is an effective tool for estimating population demographic parameters and monitoring genetic diversity in natural populations. Genetic monitoring is likely to become more important in the future as many natural populations are undergoing anthropogenically driven declines, which are unlikely to abate without intensive adaptive management efforts that often include MIS approaches. Here, we profile the expanding suite of genomic methods and platforms compatible with producing genotypes from MIS, considering factors such as development costs and error rates. We evaluate how powerful new approaches will enhance our ability to investigate questions typically answered using genetic monitoring, such as estimating abundance, genetic structure and relatedness. As the field is in a period of unusually rapid transition, we also highlight the importance of legacy data sets and recommend how to address the challenges of moving between traditional and next-generation genetic monitoring platforms. Finally, we consider how genetic monitoring could move beyond genotypes in the future. For example, assessing microbiomes or epigenetic markers could provide a greater understanding of the relationship between individuals and their environment.

125 citations

Journal ArticleDOI
TL;DR: HTS of microsatellites provided accurate individual identification and parentage assignment and resulted in a significant improvement of genotyping success (84%) of faecal degraded DNA and costs reduction compared to capillary electrophoresis.
Abstract: Microsatellite markers have played a major role in ecological, evolutionary and conservation research during the past 20 years. However, technical constrains related to the use of capillary electrophoresis and a recent technological revolution that has impacted other marker types have brought to question the continued use of microsatellites for certain applications. We present a study for improving microsatellite genotyping in ecology using high-throughput sequencing (HTS). This approach entails selection of short markers suitable for HTS, sequencing PCR-amplified microsatellites on an Illumina platform and bioinformatic treatment of the sequence data to obtain multilocus genotypes. It takes advantage of the fact that HTS gives direct access to microsatellite sequences, allowing unambiguous allele identification and enabling automation of the genotyping process through bioinformatics. In addition, the massive parallel sequencing abilities expand the information content of single experimental runs far beyond capillary electrophoresis. We illustrated the method by genotyping brown bear samples amplified with a multiplex PCR of 13 new microsatellite markers and a sex marker. HTS of microsatellites provided accurate individual identification and parentage assignment and resulted in a significant improvement of genotyping success (84%) of faecal degraded DNA and costs reduction compared to capillary electrophoresis. The HTS approach holds vast potential for improving success, accuracy, efficiency and standardization of microsatellite genotyping in ecological and conservation applications, especially those that rely on profiling of low-quantity/quality DNA and on the construction of genetic databases. We discuss and give perspectives for the implementation of the method in the light of the challenges encountered in wildlife studies.

124 citations

Journal ArticleDOI
TL;DR: Next-generation sequencing based ‘genotyping-by-sequencing’ (GBS) of microsatellite loci for rapid and cost-effective genotyping in large-scale population genetic studies is examined.
Abstract: This study examines the potential of next-generation sequencing based ‘genotyping-by-sequencing’ (GBS) of microsatellite loci for rapid and cost-effective genotyping in large-scale population genetic studies. The recovery of individual genotypes from large sequence pools was achieved by PCR-incorporated combinatorial barcoding using universal primers. Three experimental conditions were employed to explore the possibility of using this approach with existing and novel multiplex marker panels and weighted amplicon mixture. The GBS approach was validated against microsatellite data generated by capillary electrophoresis. GBS allows access to the underlying nucleotide sequences that can reveal homoplasy, even in large datasets and facilitates cross laboratory transfer. GBS of microsatellites, using individual combinatorial barcoding, is potentially faster and cheaper than current microsatellite approaches and offers better and more data.

68 citations

Journal ArticleDOI
TL;DR: The results show that with appropriate selection of loci, automatedgenotyping of microsatellite loci can be achieved with very high throughput, low genotyping error and very low genotypes costs.
Abstract: megasat is software that enables genotyping of microsatellite loci using next-generation sequencing data. Microsatellites are amplified in large multiplexes, and then sequenced in pooled amplicons. megasat reads sequence files and automatically scores microsatellite genotypes. It uses fuzzy matches to allow for sequencing errors and applies decision rules to account for amplification artefacts, including nontarget amplification products, replication slippage during PCR (amplification stutter) and differential amplification of alleles. An important feature of megasat is the generation of histograms of the length-frequency distributions of amplification products for each locus and each individual. These histograms, analogous to electropherograms traditionally used to score microsatellite genotypes, enable rapid evaluation and editing of automatically scored genotypes. megasat is written in Perl, runs on Windows, Mac OS X and Linux systems, and includes a simple graphical user interface. We demonstrate megasat using data from guppy, Poecilia reticulata. We genotype 1024 guppies at 43 microsatellites per run on an Illumina MiSeq sequencer. We evaluated the accuracy of automatically called genotypes using two methods, based on pedigree and repeat genotyping data, and obtained estimates of mean genotyping error rates of 0.021 and 0.012. In both estimates, three loci accounted for a disproportionate fraction of genotyping errors; conversely, 26 loci were scored with 0-1 detected error (error rate ≤0.007). Our results show that with appropriate selection of loci, automated genotyping of microsatellite loci can be achieved with very high throughput, low genotyping error and very low genotyping costs.

65 citations

Journal ArticleDOI
TL;DR: It is suggested that whole-genome resequencing methods will be essential for allowing phylogeographers to robustly identify loci involved in phenotypic divergence and speciation, while at the same time allowing free choice of molecular markers and further resolution of the demographic history of species.
Abstract: Phylogeography is experiencing a revolution brought on by next-generation sequencing methods. A historical survey of the phylogeographic literature suggests that phylogeography typically incorporates new questions, expanding on its classical domain, when new technologies offer novel or increased numbers of molecular markers. A variety of methods for subsampling genomic variation, including restriction site associated DNA sequencing (Rad-seq) and other next generation approaches, are proving exceptionally useful in helping to define major phylogeographic lineages within species as well as details of historical demography. Next-generation methods are also blurring the edges of phylogeography and related fields such as association mapping of loci under selection, and the emerging paradigm is one of simultaneously inferring both population history across geography and genomic targets of selection. However, recent examples, including some from our lab on Anolis lizards and songbirds, suggest that genome subsampling methods, while extremely powerful for the classical goals of phylogeography, may fail to allow phylogeography to fully achieve the goals of this new, expanded domain. Specifically, if genome-wide linkage disequilibrium is low, as is the case in many species with large population sizes, most genome subsampling methods will not sample densely enough to detect selected variants, or variants closely linked to them. We suggest that whole-genome resequencing methods will be essential for allowing phylogeographers to robustly identify loci involved in phenotypic divergence and speciation, while at the same time allowing free choice of molecular markers and further resolution of the demographic history of species.

49 citations