scispace - formally typeset
Search or ask a question
Author

Marijn A. M. Versteegh

Bio: Marijn A. M. Versteegh is an academic researcher from Royal Institute of Technology. The author has contributed to research in topics: Quantum entanglement & Nanowire. The author has an hindex of 16, co-authored 37 publications receiving 2011 citations. Previous affiliations of Marijn A. M. Versteegh include Delft University of Technology & Kavli Institute of Nanoscience.

Papers
More filters
Journal ArticleDOI
TL;DR: A Bell test is reported that closes the most significant of loopholes that provide loopholes for a local realist explanation of quantum mechanics, using a well-optimized source of entangled photons, rapid setting generation, and highly efficient superconducting detectors.
Abstract: Local realism is the worldview in which physical properties of objects exist independently of measurement and where physical influences cannot travel faster than the speed of light. Bell's theorem states that this worldview is incompatible with the predictions of quantum mechanics, as is expressed in Bell's inequalities. Previous experiments convincingly supported the quantum predictions. Yet, every experiment requires assumptions that provide loopholes for a local realist explanation. Here, we report a Bell test that closes the most significant of these loopholes simultaneously. Using a well-optimized source of entangled photons, rapid setting generation, and highly efficient superconducting detectors, we observe a violation of a Bell inequality with high statistical significance. The purely statistical probability of our results to occur under local realism does not exceed 3.74×10^{-31}, corresponding to an 11.5 standard deviation effect.

1,262 citations

Journal ArticleDOI
TL;DR: This work demonstrates a bright and coherent source of strongly entangled photon pairs from a position-controlled nanowire quantum dot with a fidelity as high as 0.859±0.006 and concurrence of 0.80± 0.02.
Abstract: A bright photon source that combines high-fidelity entanglement, on-demand generation, high extraction efficiency, directional and coherent emission, as well as position control at the nanoscale is required for implementing ambitious schemes in quantum information processing, such as that of a quantum repeater. Still, all of these properties have not yet been achieved in a single device. Semiconductor quantum dots embedded in nanowire waveguides potentially satisfy all of these requirements; however, although theoretically predicted, entanglement has not yet been demonstrated for a nanowire quantum dot. Here, we demonstrate a bright and coherent source of strongly entangled photon pairs from a position-controlled nanowire quantum dot with a fidelity as high as 0.859±0.006 and concurrence of 0.80±0.02. The two-photon quantum state is modified via the nanowire shape. Our new nanoscale entangled photon source can be integrated at desired positions in a quantum photonic circuit, single-electron devices and light-emitting diodes.

208 citations

Journal ArticleDOI
TL;DR: In this paper, the authors derived and solved the Bethe-Salpeter ladder equation and computed the density-dependent reflectivity and absorption spectra of a ZnO single crystal at various wavelengths around the exciton resonance and in a broad carrier-density range.
Abstract: At carrier densities above the Mott density, Coulomb screening destroys the exciton resonance. This, together with band-gap renormalization and band filling, severely affects the optical spectra. We have experimentally studied these effects by ultrafast pump-probe reflectivity measurements on a ZnO single crystal at various wavelengths around the exciton resonance and in a broad carrier-density range. Theoretically, we determined the Mott density in ZnO to be $1.5\ifmmode\times\else\texttimes\fi{}{10}^{24}$ m${}^{\ensuremath{-}3}$ at 300 K. Taking a field-theoretical approach, we derived and solved the Bethe-Salpeter ladder equation and we computed the density-dependent reflectivity and absorption spectra. A carrier dynamics model has been developed, containing three-photon absorption, carrier cooling, and carrier trapping near the surface. The agreement between the theoretical reflectivity based on our model and the experimental data is excellent.

115 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported on the successful distribution of polarization-entangled photon pairs between Malta and Sicily over 96 km of submarine optical telecommunications fiber, with a polarization visibility above 90%.
Abstract: Quantum entanglement is one of the most extraordinary effects in quantum physics, with many applications in the emerging field of quantum information science. In particular, it provides the foundation for quantum key distribution (QKD), which promises a conceptual leap in information security. Entanglement-based QKD holds great promise for future applications owing to the possibility of device-independent security and the potential of establishing global-scale quantum repeater networks. While other approaches to QKD have already reached the level of maturity required for operation in absence of typical laboratory infrastructure, comparable field demonstrations of entanglement-based QKD have not been performed so far. Here, we report on the successful distribution of polarization-entangled photon pairs between Malta and Sicily over 96 km of submarine optical telecommunications fiber. We observe around 257 photon pairs per second, with a polarization visibility above 90%. Our results show that QKD based on polarization entanglement is now indeed viable in long-distance fiber links. This field demonstration marks the longest-distance distribution of entanglement in a deployed telecommunications network and demonstrates an international submarine quantum communication channel. This opens up myriad possibilities for future experiments and technological applications using existing infrastructure.

110 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the recent progress in the development of semiconductor devices emitting entangled photons and present the physical processes allowing the generation of entanglement and tools to characterize it; they give an overview of major recent results of the last few years and highlight perspectives for future developments.
Abstract: Entanglement is one of the most fascinating properties of quantum mechanical systems; when two particles are entangled the measurement of the properties of one of the two allows the properties of the other to be instantaneously known, whatever the distance separating them. In parallel with fundamental research on the foundations of quantum mechanics performed on complex experimental set-ups, we assist today with bourgeoning of quantum information technologies bound to exploit entanglement for a large variety of applications such as secure communications, metrology and computation. Among the different physical systems under investigation, those involving photonic components are likely to play a central role and in this context semiconductor materials exhibit a huge potential in terms of integration of several quantum components in miniature chips. In this article we review the recent progress in the development of semiconductor devices emitting entangled photons. We will present the physical processes allowing the generation of entanglement and the tools to characterize it; we will give an overview of major recent results of the last few years and highlight perspectives for future developments.

100 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this article, a review summarizes recent progress of single-photon emitters based on defects in solids and highlights new research directions, including photophysical properties of singlephoton emissions and efforts towards scalable system integration.
Abstract: This Review summarizes recent progress of single-photon emitters based on defects in solids and highlights new research directions. The photophysical properties of single-photon emitters and efforts towards scalable system integration are also discussed.

1,387 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a loophole-free violation of local realism using entangled photon pairs, ensuring that all relevant events in their Bell test are spacelike separated by placing the parties far enough apart and by using fast random number generators and high-speed polarization measurements.
Abstract: We present a loophole-free violation of local realism using entangled photon pairs. We ensure that all relevant events in our Bell test are spacelike separated by placing the parties far enough apart and by using fast random number generators and high-speed polarization measurements. A high-quality polarization-entangled source of photons, combined with high-efficiency, low-noise, single-photon detectors, allows us to make measurements without requiring any fair-sampling assumptions. Using a hypothesis test, we compute p values as small as 5.9×10^{-9} for our Bell violation while maintaining the spacelike separation of our events. We estimate the degree to which a local realistic system could predict our measurement choices. Accounting for this predictability, our smallest adjusted p value is 2.3×10^{-7}. We therefore reject the hypothesis that local realism governs our experiment.

1,201 citations

Journal ArticleDOI
TL;DR: In the past 20 years, impressive progress has been made both experimentally and theoretically in superconducting quantum circuits, which provide a platform for manipulating microwave photons as mentioned in this paper, and many higher-order effects, unusual and less familiar in traditional cavity quantum electrodynamics with natural atoms, have been experimentally observed.

909 citations

Journal ArticleDOI
TL;DR: This paper introduced a new development in theoretical quantum physics, the ''resource-theoretic'' point of view, which aims to be closely linked to experiment, and to state exactly what result you can hope to achieve for what expenditure of effort in the laboratory.
Abstract: This review introduces a new development in theoretical quantum physics, the ``resource-theoretic'' point of view. The approach aims to be closely linked to experiment, and to state exactly what result you can hope to achieve for what expenditure of effort in the laboratory. This development is an extension of the principles of thermodynamics to quantum problems; but there are resources that would never have been considered previously in thermodynamics, such as shared knowledge of a frame of reference. Many additional examples and new quantifications of resources are provided.

841 citations