scispace - formally typeset
Search or ask a question
Author

Mariko L. Bennett

Bio: Mariko L. Bennett is an academic researcher from Children's Hospital of Philadelphia. The author has contributed to research in topics: Microglia & Medicine. The author has an hindex of 14, co-authored 21 publications receiving 9052 citations. Previous affiliations of Mariko L. Bennett include Stanford University & University of Pennsylvania.

Papers
More filters
Journal ArticleDOI
26 Jan 2017-Nature
TL;DR: It is shown that activated microglia induce A1 astrocytes by secreting Il-1α, TNF and C1q, and that these cytokines together are necessary and sufficient to induce A2 astroCytes, which are abundant in various human neurodegenerative diseases.
Abstract: This work was supported by grants from the National Institutes of Health (R01 AG048814, B.A.B.; RO1 DA15043, B.A.B.; P50 NS38377, V.L.D. and T.M.D.) Christopher and Dana Reeve Foundation (B.A.B.), the Novartis Institute for Biomedical Research (B.A.B.), Dr. Miriam and Sheldon G. Adelson Medical Research Foundation (B.A.B.), the JPB Foundation (B.A.B., T.M.D.), the Cure Alzheimer’s Fund (B.A.B.), the Glenn Foundation (B.A.B.), the Esther B O’Keeffe Charitable Foundation (B.A.B.), the Maryland Stem Cell Research Fund (2013-MSCRFII-0105-00, V.L.D.; 2012-MSCRFII-0268-00, T.M.D.; 2013-MSCRFII-0105-00, T.M.D.; 2014-MSCRFF-0665, M.K.). S.A.L. was supported by a postdoctoral fellowship from the Australian National Health and Medical Research Council (GNT1052961), and the Glenn Foundation Glenn Award. L.E.C. was funded by a Merck Research Laboratories postdoctoral fellowship (administered by the Life Science Research Foundation). W.-S.C. was supported by a career transition grant from NEI (K99EY024690). C.J.B. was supported by a postdoctoral fellowship from Damon Runyon Cancer Research Foundation (DRG-2125-12). L.S. was supported by a postdoctoral fellowship from the German Research Foundation (DFG, SCHI 1330/1-1).

4,326 citations

Journal ArticleDOI
TL;DR: The authors' data provide clues as to how neurons and astrocytes differ in their ability to dynamically regulate glycolytic flux and lactate generation attributable to unique splicing of PKM2, the gene encoding the glycoleytic enzyme pyruvate kinase.
Abstract: The major cell classes of the brain differ in their developmental processes, metabolism, signaling, and function To better understand the functions and interactions of the cell types that comprise these classes, we acutely purified representative populations of neurons, astrocytes, oligodendrocyte precursor cells, newly formed oligodendrocytes, myelinating oligodendrocytes, microglia, endothelial cells, and pericytes from mouse cerebral cortex We generated a transcriptome database for these eight cell types by RNA sequencing and used a sensitive algorithm to detect alternative splicing events in each cell type Bioinformatic analyses identified thousands of new cell type-enriched genes and splicing isoforms that will provide novel markers for cell identification, tools for genetic manipulation, and insights into the biology of the brain For example, our data provide clues as to how neurons and astrocytes differ in their ability to dynamically regulate glycolytic flux and lactate generation attributable to unique splicing of PKM2, the gene encoding the glycolytic enzyme pyruvate kinase This dataset will provide a powerful new resource for understanding the development and function of the brain To ensure the widespread distribution of these datasets, we have created a user-friendly website (http://webstanfordedu/group/barres_lab/brain_rnaseqhtml) that provides a platform for analyzing and comparing transciption and alternative splicing profiles for various cell classes in the brain

3,891 citations

Journal ArticleDOI
TL;DR: Transmembrane protein 119 (Tmem119), a cell-surface protein of unknown function, is identified as a highly expressed microglia-specific marker in both mouse and human, which will greatly facilitate understanding of microglial function in health and disease.
Abstract: The specific function of microglia, the tissue resident macrophages of the brain and spinal cord, has been difficult to ascertain because of a lack of tools to distinguish microglia from other immune cells, thereby limiting specific immunostaining, purification, and manipulation. Because of their unique developmental origins and predicted functions, the distinction of microglia from other myeloid cells is critically important for understanding brain development and disease; better tools would greatly facilitate studies of microglia function in the developing, adult, and injured CNS. Here, we identify transmembrane protein 119 (Tmem119), a cell-surface protein of unknown function, as a highly expressed microglia-specific marker in both mouse and human. We developed monoclonal antibodies to its intracellular and extracellular domains that enable the immunostaining of microglia in histological sections in healthy and diseased brains, as well as isolation of pure nonactivated microglia by FACS. Using our antibodies, we provide, to our knowledge, the first RNAseq profiles of highly pure mouse microglia during development and after an immune challenge. We used these to demonstrate that mouse microglia mature by the second postnatal week and to predict novel microglial functions. Together, we anticipate these resources will be valuable for the future study and understanding of microglia in health and disease.

1,299 citations

Journal ArticleDOI
11 Jan 2013-Science
TL;DR: Although microglial activation is often considered neurotoxic, microglia are essential defenders against many neurodegenerative diseases.
Abstract: Microglia are resident immune cells in the brain and spinal cord. These cells provide immune surveillance and are mobilized in response to disparate diseases and injuries. Although microglial activation is often considered neurotoxic, microglia are essential defenders against many neurodegenerative diseases. It also seems increasingly likely that microglial dysfunction can underlie certain neurological diseases without an obvious immune component.

730 citations

Journal ArticleDOI
21 Jun 2012-Nature
TL;DR: Glypicans is identified as a family of novel astrocyte-derived molecules that are necessary and sufficient to promote glutamate receptor clustering and receptivity and to induce the formation of postsynaptically functioning CNS synapses.
Abstract: In the developing central nervous system (CNS), the control of synapse number and function is critical to the formation of neural circuits. We previously demonstrated that astrocyte-secreted factors powerfully induce the formation of functional excitatory synapses between CNS neurons. Astrocyte-secreted thrombospondins induce the formation of structural synapses, but these synapses are postsynaptically silent. Here we use biochemical fractionation of astrocyte-conditioned medium to identify glypican 4 (Gpc4) and glypican 6 (Gpc6) as astrocyte-secreted signals sufficient to induce functional synapses between purified retinal ganglion cell neurons, and show that depletion of these molecules from astrocyte-conditioned medium significantly reduces its ability to induce postsynaptic activity. Application of Gpc4 to purified neurons is sufficient to increase the frequency and amplitude of glutamatergic synaptic events. This is achieved by increasing the surface level and clustering, but not overall cellular protein level, of the GluA1 subunit of the AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) glutamate receptor (AMPAR). Gpc4 and Gpc6 are expressed by astrocytes in vivo in the developing CNS, with Gpc4 expression enriched in the hippocampus and Gpc6 enriched in the cerebellum. Finally, we demonstrate that Gpc4-deficient mice have defective synapse formation, with decreased amplitude of excitatory synaptic currents in the developing hippocampus and reduced recruitment of AMPARs to synapses. These data identify glypicans as a family of novel astrocyte-derived molecules that are necessary and sufficient to promote glutamate receptor clustering and receptivity and to induce the formation of postsynaptically functioning CNS synapses.

589 citations


Cited by
More filters
Journal ArticleDOI
26 Jan 2017-Nature
TL;DR: It is shown that activated microglia induce A1 astrocytes by secreting Il-1α, TNF and C1q, and that these cytokines together are necessary and sufficient to induce A2 astroCytes, which are abundant in various human neurodegenerative diseases.
Abstract: This work was supported by grants from the National Institutes of Health (R01 AG048814, B.A.B.; RO1 DA15043, B.A.B.; P50 NS38377, V.L.D. and T.M.D.) Christopher and Dana Reeve Foundation (B.A.B.), the Novartis Institute for Biomedical Research (B.A.B.), Dr. Miriam and Sheldon G. Adelson Medical Research Foundation (B.A.B.), the JPB Foundation (B.A.B., T.M.D.), the Cure Alzheimer’s Fund (B.A.B.), the Glenn Foundation (B.A.B.), the Esther B O’Keeffe Charitable Foundation (B.A.B.), the Maryland Stem Cell Research Fund (2013-MSCRFII-0105-00, V.L.D.; 2012-MSCRFII-0268-00, T.M.D.; 2013-MSCRFII-0105-00, T.M.D.; 2014-MSCRFF-0665, M.K.). S.A.L. was supported by a postdoctoral fellowship from the Australian National Health and Medical Research Council (GNT1052961), and the Glenn Foundation Glenn Award. L.E.C. was funded by a Merck Research Laboratories postdoctoral fellowship (administered by the Life Science Research Foundation). W.-S.C. was supported by a career transition grant from NEI (K99EY024690). C.J.B. was supported by a postdoctoral fellowship from Damon Runyon Cancer Research Foundation (DRG-2125-12). L.S. was supported by a postdoctoral fellowship from the German Research Foundation (DFG, SCHI 1330/1-1).

4,326 citations

Journal Article
TL;DR: Schulz et al. as discussed by the authors investigated whether adult macrophages all share a common developmental origin and found that a population of yolk-sac-derived, tissue-resident macophages was able to develop and persist in adult mice in the absence of hematopoietic stem cells.
Abstract: Macrophage Development Rewritten Macrophages provide protection against a wide variety of infections and critically shape the inflammatory environment in many tissues. These cells come in many flavors, as determined by differences in gene expression, cell surface phenotype and specific function. Schulz et al. (p. 86, published online 22 March) investigated whether adult macrophages all share a common developmental origin. Immune cells, including most macrophages, are widely thought to arise from hematopoietic stem cells (HSCs), which require the transcription factor Myb for their development. Analysis of Myb-deficient mice revealed that a population of yolk-sac–derived, tissue-resident macrophages was able to develop and persist in adult mice in the absence of HSCs. Importantly, yolk sac–derived macrophages also contributed substantially to the tissue macrophage pool even when HSCs were present. In mice, a population of tissue-resident macrophages arises independently of bone marrow–derived stem cells. Macrophages and dendritic cells (DCs) are key components of cellular immunity and are thought to originate and renew from hematopoietic stem cells (HSCs). However, some macrophages develop in the embryo before the appearance of definitive HSCs. We thus reinvestigated macrophage development. We found that the transcription factor Myb was required for development of HSCs and all CD11bhigh monocytes and macrophages, but was dispensable for yolk sac (YS) macrophages and for the development of YS-derived F4/80bright macrophages in several tissues, such as liver Kupffer cells, epidermal Langerhans cells, and microglia—cell populations that all can persist in adult mice independently of HSCs. These results define a lineage of tissue macrophages that derive from the YS and are genetically distinct from HSC progeny.

1,673 citations

Journal ArticleDOI
TL;DR: Pathway analysis implicates immunity, lipid metabolism, tau binding proteins, and amyloid precursor protein (APP) metabolism, showing that genetic variants affecting APP and Aβ processing are associated not only with early-onset autosomal dominant Alzheimer’s disease but also with LOAD.
Abstract: Risk for late-onset Alzheimer’s disease (LOAD), the most prevalent dementia, is partially driven by genetics. To identify LOAD risk loci, we performed a large genome-wide association meta-analysis of clinically diagnosed LOAD (94,437 individuals). We confirm 20 previous LOAD risk loci and identify five new genome-wide loci (IQCK, ACE, ADAM10, ADAMTS1, and WWOX), two of which (ADAM10, ACE) were identified in a recent genome-wide association (GWAS)-by-familial-proxy of Alzheimer’s or dementia. Fine-mapping of the human leukocyte antigen (HLA) region confirms the neurological and immune-mediated disease haplotype HLA-DR15 as a risk factor for LOAD. Pathway analysis implicates immunity, lipid metabolism, tau binding proteins, and amyloid precursor protein (APP) metabolism, showing that genetic variants affecting APP and Aβ processing are associated not only with early-onset autosomal dominant Alzheimer’s disease but also with LOAD. Analyses of risk genes and pathways show enrichment for rare variants (P = 1.32 × 10−7), indicating that additional rare variants remain to be identified. We also identify important genetic correlations between LOAD and traits such as family history of dementia and education.

1,641 citations

Journal ArticleDOI
06 Jan 2016-Neuron
TL;DR: The development of an immunopanning method to acutely purify astrocytes from fetal, juvenile, and adult human brains and to maintain these cells in serum-free cultures is reported, finding that human astroCytes have abilities similar to those of murine astroicytes in promoting neuronal survival, inducing functional synapse formation, and engulfing synaptosomes.

1,593 citations