scispace - formally typeset
Search or ask a question
Author

Marilyn G. Farquhar

Other affiliations: Tufts University, Yale University, University of California  ...read more
Bio: Marilyn G. Farquhar is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Golgi apparatus & Heterotrimeric G protein. The author has an hindex of 91, co-authored 223 publications receiving 24125 citations. Previous affiliations of Marilyn G. Farquhar include Tufts University & Yale University.


Papers
More filters
Journal ArticleDOI
TL;DR: The pH of the medial/trans-Golgi was measured and demonstrated that the Golgi membrane in intact cells is relatively permeable to H+, and that Cl- serves as a counter-ion for H+ transport and likely helps to maintain electroneutrality.
Abstract: Many cellular events depend on a tightly compartmentalized distribution of H+ ions across membrane-bound organelles. However, measurements of organelle pH in living cells have been scarce. Several mutants of the Aequorea victoria green fluorescent protein (GFP) displayed a pH-dependent absorbance and fluorescent emission, with apparent pKa values ranging from 6.15 (mutations F64L/S65T/H231L) and 6.4 (K26R/F64L/S65T/Y66W/N146I/M153T/V163A/N164H/H231L) to a remarkable 7.1 (S65G/S72A/T203Y/H231L). We have targeted these GFPs to the cytosol plus nucleus, the medial/trans-Golgi by fusion with galactosyltransferase, and the mitochondrial matrix by using the targeting signal from subunit IV of cytochrome c oxidase. Cells in culture transfected with these cDNAs displayed the expected subcellular localization by light and electron microscopy and reported local pH that was calibrated in situ with ionophores. We monitored cytosolic and nuclear pH of HeLa cells, and mitochondrial matrix pH in HeLa cells and in rat neonatal cardiomyocytes. The pH of the medial/trans-Golgi was measured at steady-state (calibrated to be 6.58 in HeLa cells) and after various manipulations. These demonstrated that the Golgi membrane in intact cells is relatively permeable to H+, and that Cl− serves as a counter-ion for H+ transport and likely helps to maintain electroneutrality. The amenability to engineer GFPs to specific subcellular locations or tissue targets using gene fusion and transfer techniques should allow us to examine pH at sites previously inaccessible.

1,087 citations

Journal ArticleDOI
TL;DR: Large coated vesicles serve as heterophagosomes to transport absorbed protein to lysosomes, and some small coated vedicle serve as primary lysOSome to transport hydrolytic enzymes from the Golgi complex to multivesicular bodies.
Abstract: The role of coated vesicles during the absorption of horseradish peroxidase was investigated in the epithelium of the rat vas deferens by electron microscopy and cytochemistry. Peroxidase was introduced into the vas lumen in vivo. Tissue was excised at selected intervals, fixed in formaldehyde-glutaraldehyde, sectioned without freezing, incubated in Karnovsky's medium, postfixed in OsO(4), and processed for electron microscopy. Some controls and peroxidase-perfused specimens were incubated with TPP,(1) GP, and CMP. Attention was focused on the Golgi complex, apical multivesicular bodies, and two populations of coated vesicles; large (> 1000 A) ones concentrated in the apical cytoplasm and small (<750 A) ones found primarily in the Golgi region. 10 min after peroxidase injection, the tracer is found adhering to the surface plasmalemma, concentrated in bristle-coated invaginations, and within large coated vesicles. After 20-45 min, it is present in large smooth vesicles, apical multivesicular bodies, and dense bodies. Peroxidase is not seen in small coated vesicles at any interval. Counts of small coated vesicles reveal that during peroxidase absorption they first increase in number in the Golgi region and later, in the apical cytoplasm. In both control and peroxidase-perfused specimens incubated with TPP, reaction product is seen in several Golgi cisternae and in small coated vesicles in the Golgi region. With GP, reaction product is seen in one to two Golgi cisternae, multivesicular bodies, dense bodies, and small coated vesicles present in the Golgi region or near multivesicular bodies. The results demonstrate that (a) this epithelium functions in the absorption of protein from the duct lumen, (b) large coated vesicles serve as heterophagosomes to transport absorbed protein to lysosomes, and (c) some small coated vesicles serve as primary lysosomes to transport hydrolytic enzymes from the Golgi complex to multivesicular bodies.

788 citations

Journal ArticleDOI
TL;DR: It is demonstrated that removal of heparan sulfate (but not other GAG) leads to a dramatic increase in the permeability of the GBM to NF.
Abstract: Glomerular basement membranes (GBM's) were subjected to digestion in situ with glycosaminoglycan-degrading enzymes to assess the effect of removing glycosaminoglycans (GAG) on the permeability of the GBM to native ferritin (NF). Kidneys were digested by perfusion with enzyme solutions followed by perfusion with NF. In controls treated with buffer alone, NF was seen in high concentration in the capillary lumina, but the tracer did not penetrate to any extent beyond the lamina rara interna (LRI) of the GBM, and litte or no NF reached the urinary spaces. Findings in kidneys perfused with Streptomyces hyaluronidase (removes hyaluronic acid) and chondroitinase-ABC (removes hyaluronic acid, chondroitin 4- and 6-sulfates, and dermatan sulfate, but not heparan sulfate) were the same as in controls. In kidneys digested with heparinase (which removes most GAG including heparan sulfate), NF penetrated the GBM in large amounts and reached the urinary spaces. Increased numbers of tracer molecules were found in the lamina densa (LD) and lamina rara externa (LRE) of the GBM. In control kidneys perfused with cationized ferritin (CF), CF bound to heparan-sulfate rich sites demonstrated previously in the laminae rarae; however, no CF binding was seen in heparinase-digested GBM's, confirming that the sites had been removed by the enzyme treatment. The results demonstrated that removal of heparan sulfate (but not other GAG) leads to a dramatic increase in the permeability of the GBM to NF.

659 citations

Journal ArticleDOI
TL;DR: What has been learned so far about the role of RGS proteins in regulating G protein-coupled receptor signaling is discussed and areas that may be fruitful for future research are pointed out.
Abstract: Regulator of G protein signaling (RGS) proteins are responsible for the rapid turnoff of G protein–coupled receptor signaling pathways. The major mechanism whereby RGS proteins negatively regulate G proteins is via the GTPase activating protein activity of their RGS domain. Structural and mutational analyses have characterized the RGS/Gα interaction in detail, explaining the molecular mechanisms of the GTPase activating protein activity of RGS proteins. More than 20 RGS proteins have been isolated, and there are indications that specific RGS proteins regulate specific G protein–coupled receptor pathways. This specificity is probably created by a combination of cell type–specific expression, tissue distribution, intracellular localization, posttranslational modifications, and domains other than the RGS domain that link them to other signaling pathways. In this review we discuss what has been learned so far about the role of RGS proteins in regulating G protein–coupled receptor signaling and point out areas...

606 citations

Journal ArticleDOI
TL;DR: The glomerular basement membrane was subjected to digestion with specific enzymes to determine the chemical nature of the anionic sites previously demonstrated in the laminae rarae, demonstrating that the sites contain heparan sulfate and that sialoglycoproteins or other glycosaminoglycans do not represent major components of these sites since the latter are not affected by digestion with neuraminidase and other glyCosaminoglycan-specific enzymes.
Abstract: The glomerular basement membrane was subjected to digestion with specific enzymes to determine the chemical nature (sialoglycoproteins, collagenous peptides, or glycosaminoglycans) of the anionic sites previously demonstrated in the laminae rarae. Enzyme digestion was carried out both in situ and in vitro. Kidneys were perfused in situ with enzyme solutions followed by perfusion with fixative containing the cationic dye, ruthenium red, to detect the anionic sites. Glomerular basement membranes were isolated by detergent treatment of glomeruli and incubated with enzyme solutions, followed by incubation with cationized ferritin (pI 7.3-7.5) to label the anionic sites. Only highly purified enzymes free of proteolytic activity were used. The findings were the same both in situ and in vitro. The anionic sites were unaffected by treatment with neuraminidase, chondroitinase ABC, and testicular or leech hyaluronidase. However, they could no longer be demonstrated after digestion with crude heparinase, purified heparitinase, or Pronase or after nitrous acid oxidation. The results demonstrate that the sites contain heparan sulfate since they are removed by treatment with heparitinase and by nitrous acid oxidation—procedures specific for heparan sulfate; and that sialoglycoproteins or other glycosaminoglycans do not represent major components of these sites since the latter are not affected by digestion with neuraminidase and other glycosaminoglycan-specific enzymes. Identical findings were obtained on basement membranes in other locations (Bowman's capsule, tubule epithelium, and endothelium of peritubular capillaries). The presence of heparan sulfate in the glomerular basement membrane is discussed in relation to the charge-selective properties of the glomerular filter and in relation to its potential involvement in various types of glomerular injury.

555 citations


Cited by
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
TL;DR: The latest red version matures more completely, is more tolerant of N-terminal fusions and is over tenfold more photostable than mRFP1, and three monomers with distinguishable hues from yellow-orange to red-orange have higher quantum efficiencies.
Abstract: Fluorescent proteins are genetically encoded, easily imaged reporters crucial in biology and biotechnology. When a protein is tagged by fusion to a fluorescent protein, interactions between fluorescent proteins can undesirably disturb targeting or function. Unfortunately, all wild-type yellow-to-red fluorescent proteins reported so far are obligately tetrameric and often toxic or disruptive. The first true monomer was mRFP1, derived from the Discosoma sp. fluorescent protein "DsRed" by directed evolution first to increase the speed of maturation, then to break each subunit interface while restoring fluorescence, which cumulatively required 33 substitutions. Although mRFP1 has already proven widely useful, several properties could bear improvement and more colors would be welcome. We report the next generation of monomers. The latest red version matures more completely, is more tolerant of N-terminal fusions and is over tenfold more photostable than mRFP1. Three monomers with distinguishable hues from yellow-orange to red-orange have higher quantum efficiencies.

4,607 citations

Book ChapterDOI
01 Jan 1983

3,419 citations

Journal ArticleDOI
28 Aug 1997-Nature
TL;DR: New fluorescent indicators for Ca2+ that are genetically encoded without cofactors and are targetable to specific intracellular locations are constructed and dubbed ‘cameleons’.
Abstract: Important Ca2+ signals in the cytosol and organelles are often extremely localized and hard to measure. To overcome this problem we have constructed new fluorescent indicators for Ca2+ that are genetically encoded without cofactors and are targetable to specific intracellular locations. We have dubbed these fluorescent indicators 'cameleons'. They consist of tandem fusions of a blue- or cyan-emitting mutant of the green fluorescent protein (GFP), calmodulin, the calmodulin-binding peptide M13, and an enhanced green- or yellow-emitting GFP. Binding of Ca2+ makes calmodulin wrap around the M13 domain, increasing the fluorescence resonance energy transfer (FRET) between the flanking GFPs. Calmodulin mutations can tune the Ca2+ affinities to measure free Ca2+ concentrations in the range 10(-8) to 10(-2) M. We have visualized free Ca2+ dynamics in the cytosol, nucleus and endoplasmic reticulum of single HeLa cells transfected with complementary DNAs encoding chimaeras bearing appropriate localization signals. Ca2+ concentration in the endoplasmic reticulum of individual cells ranged from 60 to 400 microM at rest, and 1 to 50 microM after Ca2+ mobilization. FRET is also an indicator of the reversible intermolecular association of cyan-GFP-labelled calmodulin with yellow-GFP-labelled M13. Thus FRET between GFP mutants can monitor localized Ca2+ signals and protein heterodimerization in individual live cells.

3,248 citations

Journal ArticleDOI
07 Feb 1992-Cell
TL;DR: It is shown that a protein with a glycosylphosphatidyl inositol (GPI) anchor can be recovered from lysates of epithelial cells in a low density, detergent-insoluble form, supporting the model proposed by Simons and colleagues for sorting of certain membrane proteins to the apical surface after intracellular association with glycosphingolipids.

2,970 citations