scispace - formally typeset
Search or ask a question
Author

Marín Ja

Bio: Marín Ja is an academic researcher. The author has an hindex of 1, co-authored 1 publications receiving 3 citations.

Papers
More filters
Posted ContentDOI
27 Jul 2018
TL;DR: In this article, the behavior of fractures in carbonates plays a key role in those reservoirs in which porous matrix permeability is very poor, which drives the CO2 plume migration through the fracture network where hydromechanics and geochemical effects take place due to injection.
Abstract: CO2 geological storage in deep saline aquifers was recently developed at industrial scale mainly in sandstone formations. Experiences on CO2 injections in carbonates aquifers for permanent trapping are quite limited, mostly from US projects such as AEP Mountaineer, Michigan and Williston Basin. The behavior of fractures in carbonates plays a key role in those reservoirs in which porous matrix permeability is very poor, which drives the CO2 plume migration through the fracture network where hydromechanics and geochemical effects take place due to injection. Hontomín (Spain) is the actual on-shore injection pilot in Europe (EP Resolution of 14 January 2014), whose reservoir is comprised of fractured carbonates. Existing experiences from field scale tests conducted on site have supported to better understand the behavior of this type of reservoirs for CO2 geological storage. Innovative CO2 injection strategies are being carried out in ENOS Project (EU H2020 Programme, http://www.enos-project.eu). First results based on field tests conducted at Hontomín, and the advanced modelling developed so far will be analyzed and discussed in this article, as well as, the description of future works. The evolution of operating parameters such as flow rate, pressure and recovery term during the tests confirm the CO2 migration through the fractures.

3 citations


Cited by
More filters
Journal ArticleDOI
19 Sep 2018
TL;DR: In this article, a geological model encompassing the whole storage complex was established based upon newly-drilled and legacy wells and the matrix characteristics were mainly obtained from the newly drilled wells with a complete suite of log acquisitions, laboratory works and hydraulic tests.
Abstract: Investigation into geological storage of CO2 is underway at Hontomin (Spain). The storage reservoir is a deep saline aquifer formed by naturally fractured carbonates with low matrix permeability. Understanding the processes that are involved in CO2 migration within these formations is key to ensure safe operation and reliable plume prediction. A geological model encompassing the whole storage complex was established based upon newly-drilled and legacy wells. The matrix characteristics were mainly obtained from the newly drilled wells with a complete suite of log acquisitions, laboratory works and hydraulic tests. The model major improvement is the integration of the natural fractures. Following a methodology that was developed for naturally fractured hydrocarbon reservoirs, the advanced characterization workflow identified the main sets of fractures and their main characteristics, such as apertures, orientations, and dips. Two main sets of fracture are identified based upon their mean orientation: North-South and East-West with different fracture density for each the facies. The flow capacity of the fracture sets are calibrated on interpreted injection tests by matching their permeability and aperture at the Discrete Fracture Network scale and are subsequently upscaled to the geological model scale. A key new feature of the model is estimated permeability anisotropy induced by the fracture sets.

13 citations

Journal ArticleDOI
TL;DR: In this paper, the petrophysical behavior of two carbonate formations was studied, with different proportions of limestone, dolomite, quartz and anhydrite and fissures sealed mainly by potassium aluminosilicates and iron sulphides.

8 citations

Posted ContentDOI
23 May 2018
TL;DR: In this paper, the authors used a compositional dual media model to simulate the injection of CO2 and synthetic brine at the Technology Development Plant (TDP) at Hontomín (Burgos, Spain).
Abstract: Investigation into geological storage of CO2 is underway at the Technology Development Plant (TDP) at Hontomín (Burgos, Spain), the only current onshore injection site in the European Union. The storage reservoir is a deep saline aquifer located within Low Jurassic Formations (Lias and Dogger), formed by fractured carbonates with low matrix permeability. Understanding the processes involved in CO2 migration within this kind of low-primary permeability carbonates influenced by fractures and faults is key to ensure safe operation and reliable plume prediction. During the hydraulic characterization tests, 2300 tons of liquid CO2 and 14000 m of synthetic brine were co-injected on site in various sequences to characterize the pressure response of the seal-storage pair [de Dios et al, 2017] The injection tests were analyzed with a compositional dual media model which accounts for both temperature effects (as the CO2 is liquid at the bottom of the wellbore) and multiphase flow hysteresis (to effectively simulate the alternating brine and CO2 injection tests that were performed). The pressure and temperature responses of the storage formation were historymatched mainly through the petrophysical characteristics of the fracture network [Le Gallo et al, 2017]. The dynamic characterization of the fracture network dominates the CO2 migration while the matrix does not appear to significantly contribute to the storage capacity. This initial modeling approach was improved using the characterization workflow developed within the European FP7 CO2ReMove project for sandstone fractured reservoirs [Ringrose et al., 2011; Deflandre et al., 2011]. Fractured reservoirs are challenging to handle because of their high level of heterogeneity that conditions the reservoir behaviour during the injection. In particular, natural fractures have a significant impact on well performance [Ray et al, 2012]. Furthermore, the understanding of the processes involved in CO2 migration within relatively low-permeability storage influenced by fractures and faults is essential for enabling safe storage operation [Iding and Ringrose, 2010]. As part of the European H2020 ENOS project, the site geological model is updated by integration of the recently acquired data such as the image log interpretations from injection and observation wells. The geological model is generated through the analysis and integration of data including borehole images and well test data. Following a methodology developed for naturally fractured hydrocarbon reservoirs [Ray et al., 2012], the image log analysis identified two sets of diffuse fractures. A Discrete Fracture Network [Bourbiaux et al., 2005] was built around both wells which encompass the caprock, storage and underburden formations. The fracture characteristics of the two sets of diffuse fractures, such as orientations, densities and conductivities, are calibrated upon the interpretation of the injection tests [Le Gallo et al, 2017]. For each facies, the DFN characteristics were then upscaled and propagated to the full-field reservoir simulation model as 3D fracture properties (fracture porosity, fracture permeability and equivalent block size). Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2018 doi:10.20944/preprints201805.0324.v1 © 2018 by the author(s). Distributed under a Creative Commons CC BY license. Peer-reviewed version available at Geosciences 2018, 8, 354; doi:10.3390/geosciences8090354

1 citations