scispace - formally typeset
Search or ask a question
Author

Marina Frontali

Other affiliations: Sapienza University of Rome
Bio: Marina Frontali is an academic researcher from National Research Council. The author has contributed to research in topics: Trinucleotide repeat expansion & Spinocerebellar ataxia. The author has an hindex of 38, co-authored 100 publications receiving 6430 citations. Previous affiliations of Marina Frontali include Sapienza University of Rome.


Papers
More filters
Journal ArticleDOI
TL;DR: The initial observation of an expanded and unstable trinucleotide repeat in the Huntington's disease gene has now been confirmed and extended in 150 independent Huntington’s disease families and the analysis of the length and instability of individual repeats in members of these families has profound implications for presymptomatic diagnosis.
Abstract: The initial observation of an expanded and unstable trinucleotide repeat in the Huntington's disease gene has now been confirmed and extended in 150 independent Huntington's disease families. HD chromosomes contained 37-86 repeat units, whereas normal chromosomes displayed 11-34 repeats. The HD repeat length was inversely correlated with the age of onset of the disorder. The HD repeat was unstable in more than 80% of meiotic transmissions showing both increases and decreases in size with the largest increases occurring in paternal transmissions. The targeting of spermatogenesis as a particular source of repeat instability is reflected in the repeat distribution of HD sperm DNA. The analysis of the length and instability of individual repeats in members of these families has profound implications for presymptomatic diagnosis.

1,058 citations

Journal Article
TL;DR: Optimized methods for reliable sizing of CAG repeats are optimized and cases that demonstrate the dangers of using PCR assays that include both the CAG and CCG polymorphisms are shown.
Abstract: Abnormal CAG expansions in the IT-15 gene are associated with Huntington disease (HD). In the diagnostic setting it is necessary to define the limits of the CAG size ranges on normal and HD-associated chromosomes. Most large analyses that defined the limits of the normal and pathological size ranges employed PCR assays, which included the CAG repeats and a CCG repeat tract that was thought to be invariant. Many of these experiments found an overlap between the normal and disease size ranges. Subsequent findings that the CCG repeats vary by 8 trinucleotide lengths suggested that the limits of the normal and disease size ranges should be reevaluated with assays that exclude the CCG polymorphism. Since patients with between 30 and 40 repeats are rare, a consortium was assembled to collect such individuals. All 178 samples were reanalyzed in Cambridge by using assays specific for the CAG repeats. We have optimized methods for reliable sizing of CAG repeats and show cases that demonstrate the dangers of using PCR assays that include both the CAG and CCG polymorphisms. Seven HD patients had 36 repeats, which confirms that this allele is associated with disease. Individuals without apparent symptoms or signs of HD were found at 36 repeats (aged 74, 78, 79, and 87 years), 37 repeats (aged 69 years), 38 repeats (aged 69 and 90 years), and 39 repeats (aged 67, 90, and 95 years). The detailed case histories of an exceptional case from this series will be presented: a 95-year-old man with 39 repeats who did not have classical features of HD. The apparently healthy survival into old age of some individuals with 36-39 repeats suggests that the HD mutation may not always be fully penetrant.

537 citations

Journal ArticleDOI
TL;DR: A large Sicilian family with four definitely affected members (the Marsala kindred) was identified, characterized by early-onset parkinsonism, with slow progression and sustained response to levodopa, and the Parkin-associated phenotype is broad, and some cases are indistinguishable from idiopathic PD.
Abstract: The cause of Parkinson disease (PD) is still unknown, but genetic factors have recently been implicated in the etiology of the disease. So far, four loci responsible for autosomal dominant PD have been identified. Autosomal recessive juvenile parkinsonism (ARJP) is a clinically and genetically distinct entity; typical PD features are associated with early onset, sustained response to levodopa, and early occurrence of levodopa-induced dyskinesias, which are often severe. To date, only one ARJP gene, Parkin, has been identified, and multiple mutations have been detected both in families with autosomal recessive parkinsonism and in sporadic cases. The Parkin-associated phenotype is broad, and some cases are indistinguishable from idiopathic PD. In ⩾50% of families with ARJP that have been analyzed, no mutations could be detected in the Parkin gene. We identified a large Sicilian family with four definitely affected members (the Marsala kindred). The phenotype was characterized by early-onset (range 32–48 years) parkinsonism, with slow progression and sustained response to levodopa. Linkage of the disease to the Parkin gene was excluded. A genomewide homozygosity screen was performed in the family. Linkage analysis and haplotype construction allowed identification of a single region of homozygosity shared by all the affected members, spanning 12.5 cM on the short arm of chromosome 1. This region contains a novel locus for autosomal recessive early-onset parkinsonism, PARK6. A maximum LOD score 4.01 at recombination fraction .00 was obtained for marker D1S199.

465 citations

Journal ArticleDOI
TL;DR: Age at onset of diagnostic motor manifestations in Huntington disease (HD) is strongly correlated with an expanded CAG trinucleotide repeat, and the rate of HD pathogenesis leading to motor diagnosis is determined by a completely dominant action of the longest expanded allele and as yet unidentified genetic or environmental factors.
Abstract: Objective: Age at onset of diagnostic motor manifestations in Huntington disease (HD) is strongly correlated with an expanded CAG trinucleotide repeat. The length of the normal CAG repeat allele has been reported also to influence age at onset, in interaction with the expanded allele. Due to profound implications for disease mechanism and modification, we tested whether the normal allele, interaction between the expanded and normal alleles, or presence of a second expanded allele affects age at onset of HD motor signs. Methods: We modeled natural log-transformed age at onset as a function of CAG repeat lengths of expanded and normal alleles and their interaction by linear regression. Results: An apparently significant effect of interaction on age at motor onset among 4,068 subjects was dependent on a single outlier data point. A rigorous statistical analysis with a wellbehaved dataset that conformed to the fundamental assumptions of linear regression (e.g., constant variance and normally distributed error) revealed significance only for the expanded CAG repeat, with no effect of the normal CAG repeat. Ten subjects with 2 expanded alleles showed an age at motor onset consistent with the length of the larger expanded allele. Conclusions: Normal allele CAG length, interaction between expanded and normal alleles, and presence of a second expanded allele do not influence age at onset of motor manifestations, indicating that the rate of HD pathogenesis leading to motor diagnosis is determined by a completely dominant action of the longest expanded allele and as yet unidentified genetic or environmental factors. Neurology ® 2012;78:690–695

303 citations

Journal ArticleDOI
TL;DR: This work identifies AFG3L2 as a novel cause of dominant neurodegenerative disease and indicates a previously unknown role for this component of the mitochondrial protein quality control machinery in protecting the human cerebellum against neurodegenersation.
Abstract: Autosomal dominant spinocerebellar ataxias (SCAs) are genetically heterogeneous neurological disorders characterized by cerebellar dysfunction mostly due to Purkinje cell degeneration. Here we show that AFG3L2 mutations cause SCA type 28. Along with paraplegin, which causes recessive spastic paraplegia, AFG3L2 is a component of the conserved m-AAA metalloprotease complex involved in the maintenance of the mitochondrial proteome. We identified heterozygous missense mutations in five unrelated SCA families and found that AFG3L2 is highly and selectively expressed in human cerebellar Purkinje cells. m-AAA-deficient yeast cells expressing human mutated AFG3L2 homocomplex show respiratory deficiency, proteolytic impairment and deficiency of respiratory chain complex IV. Structure homology modeling indicates that the mutations may affect AFG3L2 substrate handling. This work identifies AFG3L2 as a novel cause of dominant neurodegenerative disease and indicates a previously unknown role for this component of the mitochondrial protein quality control machinery in protecting the human cerebellum against neurodegeneration.

287 citations


Cited by
More filters
Journal ArticleDOI
26 Mar 1993-Cell
TL;DR: In this article, the authors used haplotype analysis of linkage disequilibrium to spotlight a small segment of 4p16.3 as the likely location of the defect, which is expanded and unstable on HD chromosomes.

7,224 citations

Journal Article
25 Mar 1993-Cell
TL;DR: The Huntington's disease mutation involves an unstable DNA segment, similar to those described in fragile X syndrome, spino-bulbar muscular atrophy, and myotonic dystrophy, acting in the context of a novel 4p16.3 gene to produce a dominant phenotype.

6,992 citations

Journal ArticleDOI
21 May 2004-Science
TL;DR: The identification of two homozygous mutations affecting the PINK1 kinase domain in three consanguineous PARK6 families provide a direct molecular link between mitochondria and the pathogenesis of PD.
Abstract: Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of dopaminergic neurons in the substantia nigra We previously mapped a locus for a rare familial form of PD to chromosome 1p36 (PARK6) Here we show that mutations in PINK1 (PTEN-induced kinase 1) are associated with PARK6 We have identified two homozygous mutations affecting the PINK1 kinase domain in three consanguineous PARK6 families: a truncating nonsense mutation and a missense mutation at a highly conserved amino acid Cell culture studies suggest that PINK1 is mitochondrially located and may exert a protective effect on the cell that is abrogated by the mutations, resulting in increased susceptibility to cellular stress These data provide a direct molecular link between mitochondria and the pathogenesis of PD

3,224 citations

Journal ArticleDOI
09 Aug 1996-Cell
TL;DR: A CKR-5 allele present in the human population appears to protect homozygous individuals from sexual transmission of HIV-1 and is suggested to provide a means of preventing or slowing disease progression.

3,110 citations

Journal ArticleDOI
26 Sep 1997-Science
TL;DR: An NH2-terminal fragment of mutant huntingtin was localized to neuronal intranuclear inclusions and dystrophic neurites in the HD cortex and striatum, and polyglutamine length influenced the extent of huntingtin accumulation in these structures.
Abstract: The cause of neurodegeneration in Huntington's disease (HD) is unknown. Patients with HD have an expanded NH2-terminal polyglutamine region in huntingtin. An NH2-terminal fragment of mutant huntingtin was localized to neuronal intranuclear inclusions (NIIs) and dystrophic neurites (DNs) in the HD cortex and striatum, which are affected in HD, and polyglutamine length influenced the extent of huntingtin accumulation in these structures. Ubiquitin was also found in NIIs and DNs, which suggests that abnormal huntingtin is targeted for proteolysis but is resistant to removal. The aggregation of mutant huntingtin may be part of the pathogenic mechanism in HD.

2,731 citations