Author
Marina Mondin
Other affiliations: Instituto Politécnico Nacional, Polytechnic University of Turin, University of California, Los Angeles
Bio: Marina Mondin is an academic researcher from California State University, Los Angeles. The author has contributed to research in topics: Turbo code & Communication channel. The author has an hindex of 23, co-authored 163 publications receiving 1811 citations. Previous affiliations of Marina Mondin include Instituto Politécnico Nacional & Polytechnic University of Turin.
Papers published on a yearly basis
Papers
More filters
TL;DR: A throughput analysis of the IEEE 802.11 protocol at the data link layer in non-saturated traffic conditions taking into account the impact of both transmission channel and capture effects in Rayleigh fading environment is provided.
Abstract: In this paper, we provide a saturation throughput analysis of the IEEE 802.11 protocol at the data link layer by including the impact of both transmission channel and capture effects in Rayleigh fading environment. Impacts of both non-ideal channel and capture effects, specially in an environment of high interference, become important in terms of the actual observed throughput. As far as the 4-way handshaking mechanism is concerned, we extend the multi-dimensional Markovian state transition model characterizing the behavior at the MAC layer by including transmission states that account for packet transmission failures due to errors caused by propagation through the channel. This way, any channel model characterizing the physical transmission medium can be accommodated, including AWGN and fading channels. We also extend the Markov model in order to consider the behavior of the contention window when employing the basic 2-way handshaking mechanism. Under the usual assumptions regarding the traffic generated per node and independence of packet collisions, we solve for the stationary probabilities of the Markov chain and develop expressions for the saturation throughput as a function of the number of terminals, packet sizes, raw channel error rates, capture probability, and other key system parameters. The theoretical derivations are then compared to simulation results confirming the effectiveness of the proposed models.
305 citations
TL;DR: It is shown that the particular geometry of the propagation scenario leads to a specific model applicable to the stratospheric channel, and this paper addresses the problem of modeling the small-scale fading effects.
Abstract: There has been a great interest in the development of high-altitude platforms, which are low cost stratospheric aircraft carrying payloads tailored for a wide range of applications in telecommunications and remote sensing. These platforms are capable of flying at altitudes ranging between 17 and 30 km, with a potential endurance of weeks to months, features that make them attractive for the provision of future personal communication services. This paper deals with the theoretical derivation of a channel model for the communication link between the platform and terrestrial mobile users or stations. In particular, we address the problem of modeling the small-scale fading effects. It is shown that the particular geometry of the propagation scenario leads to a specific model applicable to the stratospheric channel.
106 citations
01 Jun 1994
TL;DR: A description of the algorithms to evaluate the main parameters determining the performance of a trellis-coded modulation (TCM) scheme is presented and the algorithms are compared in terms of computational complexity and tested on a set of multidimensional PSK codes.
Abstract: A description of the algorithms to evaluate the main parameters determining the performance of a trellis-coded modulation (TCM) scheme is presented. TCM schemes are divided into classes that have an increasing degree of symmetry, so as to properly match the various algorithms to each class. The algorithms are compared in terms of computational complexity and tested on a set of multidimensional PSK codes. >
94 citations
TL;DR: A feasibility study of the use of the Heliplat platform as a UMTS base station within anintegrated terrestrial-stratospheric UMTS cellular system is presented.
Abstract: In this paper we consider several issues regarding the use of a High Altitude Platform (HAP) as a mobile communications base station for the UMTS standard. We refer in particular to a solar powered unmanned stratospheric platform named Heliplat, which is currently being designed at Politecnico di Torino within the HeliNet project funded by the European Community as part of the Fifth Framework Programme. Here we present a feasibility study of the use of the Heliplat platform as a UMTS base station within an integrated terrestrial-stratospheric UMTS cellular system. We take into account the power consumption and the weight constraint imposed by the platform technology, the interference required for a proper system operation and the requirement of maintaining full compatibility with the UMTS standard.
53 citations
TL;DR: This paper addresses the problem of designing interleavers for parallel concatenated convolutional codes (PCCCs) tailored to specific constituent codes with a canonical form of the interleaving engine denoted as the finite-state permuter (FSP) and demonstrates the minimal delay property of this canonical form.
Abstract: This paper addresses the problem of designing interleavers for parallel concatenated convolutional codes (PCCCs) tailored to specific constituent codes. We start by establishing the role of the interleaver in the PCCC and the various parameters that influence the performance of the PCCC with a given interleaver. Subsequently, we define a canonical form of the interleaving engine denoted as the finite-state permuter (FSP) and demonstrate the minimal delay property of this canonical form. For any given permutation, we present a procedure for deriving the canonical FSP engine. We address the issue of implementation of the FSP and propose a very simple structure for the FSP. Next, using the structural property of the FSP engine, we develop a systematic iterative technique for construction of interleavers with a complexity that is polynomial in the interleaver size. Subsequently, we develop a cost function that, coupled with the iterative interleaver growth procedure, can be used to design optimized interleavers for PCCCs. We provide examples of application of the interleaver design technique, and compare the designed interleavers with some of the interleavers of comparable size found in the literature.
51 citations
Cited by
More filters
TL;DR: A method to evaluate an upper bound to the bit error probability of a parallel concatenated coding scheme averaged over all interleavers of a given length is proposed and used to shed some light on some crucial questions which have been floating around in the communications community since the proposal of turbo codes.
Abstract: A parallel concatenated coding scheme consists of two simple constituent systematic encoders linked by an interleaver. The input bits to the first encoder are scrambled by the interleaver before entering the second encoder. The codeword of the parallel concatenated code consists of the input bits to the first encoder followed by the parity check bits of both encoders. This construction can be generalized to any number of constituent codes. Parallel concatenated schemes employing two convolutional codes as constituent codes, in connection with an iterative decoding algorithm of complexity comparable to that of the constituent codes, have been previously shown to yield remarkable coding gains close to theoretical limits. They have been named, and are known as, "turbo codes". We propose a method to evaluate an upper bound to the bit error probability of a parallel concatenated coding scheme averaged over all interleavers of a given length. The analytical bounding technique is then used to shed some light on some crucial questions, which have been floating around in the communications community since the proposal of turbo codes.
1,224 citations
TL;DR: This paper deals with 2/sup l/-ary transmission using multilevel coding (MLC) and multistage decoding (MSD) and shows that capacity can in fact be closely approached at high bandwidth efficiencies.
Abstract: This paper deals with 2/sup l/-ary transmission using multilevel coding (MLC) and multistage decoding (MSD). The known result that MLC and MSD suffice to approach capacity if the rates at each level are appropriately chosen is reviewed. Using multiuser information theory, it is shown that there is a large space of rate combinations such that MLC and full maximum-likelihood decoding (MLD) can approach capacity. It is noted that multilevel codes designed according to the traditional balanced distance rule tend to fall in the latter category and, therefore, require the huge complexity of MLD. The capacity rule, the balanced distances rules, and two other rules based on the random coding exponent and cutoff rate are compared and contrasted for practical design. Simulation results using multilevel binary turbo codes show that capacity can in fact be closely approached at high bandwidth efficiencies. Moreover, topics relevant in practical applications such as signal set labeling, dimensionality of the constituent constellation, and hard-decision decoding are emphasized. Bit interleaved coded modulation, proposed by Caire et al. (see ibid., vol.44, p.927-46, 1998), is reviewed in the context of MLC. Finally, the combination of signal shaping and coding is discussed. Significant shaping gains are achievable in practice only if these design rules are taken into account.
1,030 citations
TL;DR: This paper aims to give a comprehensive review of different TOA-based localization algorithms and their technical challenges, and to point out possible future research directions.
Abstract: Localization of a wireless device using the time-of-arrivals (TOAs) from different base stations has been studied extensively in the literature. Numerous localization algorithms with different accuracies, computational complexities, a-priori knowledge requirements, and different levels of robustness against non-line-of-sight (NLOS) bias effects also have been reported. However, to our best knowledge, a detailed unified survey of different localization and NLOS mitigation algorithms is not available in the literature. This paper aims to give a comprehensive review of these different TOA-based localization algorithms and their technical challenges, and to point out possible future research directions. Firstly, fundamental lower bounds and some practical estimators that achieve close to these bounds are summarized for line-of-sight (LOS) scenarios. Then, after giving the fundamental lower bounds for NLOS systems, different NLOS mitigation techniques are classified and summarized. Simulation results are also provided in order to compare the performance of various techniques. Finally, a table that summarizes the key characteristics of the investigated techniques is provided to conclude the paper.
989 citations
TL;DR: Trellis and lattice codes designed for additive white Gaussian noise channels can be superimposed on adaptive modulation for fading channels, with the same approximate coding gains, to obtain trellis-coded adaptive MQAM.
Abstract: We apply coset codes to adaptive modulation in fading channels. Adaptive modulation is a powerful technique to improve the energy efficiency and increase the data rate over a fading channel. Coset codes are a natural choice to use with adaptive modulation since the channel coding and modulation designs are separable. Therefore, trellis and lattice codes designed for additive white Gaussian noise (AWGN) channels can be superimposed on adaptive modulation for fading channels, with the same approximate coding gains. We first describe the methodology for combining coset codes with a general class of adaptive modulation techniques. We then apply this methodology to a spectrally efficient adaptive M-ary quadrature amplitude modulation (MQAM) to obtain trellis-coded adaptive MQAM. We present analytical and simulation results for this design which show an effective coding gain of 3 dB relative to uncoded adaptive MQAM for a simple four-state trellis code, and an effective 3.6-dB coding gain for an eight-state trellis code. More complex trellis codes are shown to achieve higher gains. We also compare the performance of trellis-coded adaptive MQAM to that of coded modulation with built-in time diversity and fixed-rate modulation. The adaptive method exhibits a power savings of up to 20 dB.
947 citations
Book•
[...]
01 Sep 2014
TL;DR: It is quite impossible to include in a single volume of reasonable size, an adequate and exhaustive discussion of the calculus in its more advanced stages, so it becomes necessary, in planning a thoroughly sound course in the subject, to consider several important aspects of the vast field confronting a modern writer.
Abstract: WITH the ever-widening scope of modern mathematical analysis and its many ramifications, it is quite impossible to include, in a single volume of reasonable size, an adequate and exhaustive discussion of the calculus in its more advanced stages. It therefore becomes necessary, in planning a thoroughly sound course in the subject, to consider several important aspects of the vast field confronting a modern writer. The limitation of space renders the selection of subject-matter fundamentally dependent upon the aim of the course, which may or may not be related to the content of specific examination syllabuses. Logical development, too, may lead to the inclusion of many topics which, at present, may only be of academic interest, while others, of greater practical value, may have to be omitted. The experience and training of the writer may also have, more or less, a bearing on both these considerations.Advanced CalculusBy Dr. C. A. Stewart. Pp. xviii + 523. (London: Methuen and Co., Ltd., 1940.) 25s.
881 citations