scispace - formally typeset
Search or ask a question
Author

Marina V. Nemtsova

Other affiliations: Russian Academy
Bio: Marina V. Nemtsova is an academic researcher from I.M. Sechenov First Moscow State Medical University. The author has contributed to research in topics: DNA methylation & Methylation. The author has an hindex of 11, co-authored 64 publications receiving 431 citations. Previous affiliations of Marina V. Nemtsova include Russian Academy.


Papers
More filters
Journal ArticleDOI
TL;DR: This review focuses on the role of multiple epigenetic factors in the pathogenesis and progression of the disease, not only in synovial fibroblasts, immune cells, but also in the peripheral blood of patients with RA, which clearly shows their high diagnostic potential and promising targets for therapy in the future.
Abstract: Rheumatoid arthritis (RA) is a systemic autoimmune disease that affects about 1% of the world's population. The etiology of RA remains unknown. It is considered to occur in the presence of genetic and environmental factors. An increasing body of evidence pinpoints that epigenetic modifications play an important role in the regulation of RA pathogenesis. Epigenetics causes heritable phenotype changes that are not determined by changes in the DNA sequence. The major epigenetic mechanisms include DNA methylation, histone proteins modifications and changes in gene expression caused by microRNAs and other non-coding RNAs. These modifications are reversible and could be modulated by diet, drugs, and other environmental factors. Specific changes in DNA methylation, histone modifications and abnormal expression of non-coding RNAs associated with RA have already been identified. This review focuses on the role of these multiple epigenetic factors in the pathogenesis and progression of the disease, not only in synovial fibroblasts, immune cells, but also in the peripheral blood of patients with RA, which clearly shows their high diagnostic potential and promising targets for therapy in the future.

95 citations

Journal ArticleDOI
TL;DR: The role of E-cadherin and the non-coding RNAs-mediated mechanisms of its expressional control in the EMT during stomach carcinogenesis are focused on.
Abstract: The epithelial–mesenchymal transition (EMT) is thought to be at the root of invasive and metastatic cancer cell spreading. E-cadherin is an important player in this process, which forms the structures that establish and maintain cell–cell interactions. A partial or complete loss of E-cadherin expression in the EMT is presumably mediated by mechanisms that block the expression of E-cadherin regulators and involve the E-cadherin-associated transcription factors. The protein is involved in several oncogenic signaling pathways, such as the Wnt/β-catenin, Rho GTPase, and EGF/EGFR, whereby it plays a role in many tumors, including gastric cancer. Such noncoding transcripts as microRNAs and long noncoding RNAs—critical components of epigenetic control of gene expression in carcinogenesis—contribute to regulation of the E-cadherin function by acting directly or through numerous factors controlling transcription of its gene, and thus affecting not only cancer cell proliferation and metastasis, but also the EMT. This review focuses on the role of E-cadherin and the non-coding RNAs-mediated mechanisms of its expressional control in the EMT during stomach carcinogenesis.

77 citations

Journal ArticleDOI
TL;DR: The results confirm that the detection of mutations in the main driver genes may have a significant prognostic value for GC patients and provide an independent GC-related set of clinical and molecular genetic data.
Abstract: Somatic mutation profiling in gastric cancer (GC) enables main driver mutations to be identified and their clinical and prognostic value to be evaluated. We investigated 77 tumour samples of GC by next-generation sequencing (NGS) with the Ion AmpliSeq Hotspot Panel v2 and a custom panel covering six hereditary gastric cancer predisposition genes (BMPR1A, SMAD4, CDH1, TP53, STK11 and PTEN). Overall, 47 somatic mutations in 14 genes were detected; 22 of these mutations were novel. Mutations were detected most frequently in the CDH1 (13/47) and TP53 (12/47) genes. As expected, somatic CDH1 mutations were positively correlated with distant metastases (p = 0.019) and tumours with signet ring cells (p = 0.043). These findings confirm the association of the CDH1 mutations with diffuse GC type. TP53 mutations were found to be significantly associated with a decrease in overall survival in patients with Lauren diffuse-type tumours (p = 0.0085), T3-T4 tumours (p = 0.037), and stage III-IV tumours (p = 0.013). Our results confirm that the detection of mutations in the main driver genes may have a significant prognostic value for GC patients and provide an independent GC-related set of clinical and molecular genetic data.

30 citations

Journal ArticleDOI
TL;DR: BIN1 promoter CpG island is composed of two parts differing drastically in the methylation patterns in cancer, which appears to be a common feature of cancer related genes and demands further functional significance exploration.
Abstract: Loss of BIN1 tumor suppressor expression is abundant in human cancer and its frequency exceeds that of genetic alterations, suggesting the role of epigenetic regulators (DNA methylation). BIN1 re-expression in the DU145 prostate cancer cell line after 5-aza-2'-deoxycytidine treatment was recently reported but no methylation of the BIN1 promoter CpG island was found in DU145.

28 citations

Journal ArticleDOI
TL;DR: Multiplex methylation-sensitive PCR was employed in studying the methylation of CpG islands in the RВ1, p16/CD KN2А, p15/CDKN2В, p14/ARF, СDH1, MGMT, HIC1, and N33 promoter regions in breast cancer.
Abstract: Multiplex methylation-sensitive PCR was employed in studying the methylation of CpG islands in the RВ1, p16/CDKN2А, p15/CDKN2В, p14/ARF, СDH1, MGMT, HIC1, and N33 promoter regions in breast cancer (105 tumors). Methylation was often observed for the two major suppressor genes involved in controlling the cell cycle through the Cdk–Rb–E2F signaling pathway, RВ1 (18/105, 17%) and p16 (59/105, 56%); both genes were methylated in 13 tumors. Methylation involved p15 in two (2%) tumors; CDH1, in 83 (79%) tumors; MGMT, in eight (8%) tumors, and N33, in nine (9%) tumors. The p14 promoter was not methylated in the tumors examined.

27 citations


Cited by
More filters
01 Jan 2011
TL;DR: The sheer volume and scope of data posed by this flood of data pose a significant challenge to the development of efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

2,187 citations

Journal ArticleDOI
TL;DR: The NCCN Guidelines for Prostate Cancer include recommendations regarding diagnosis, risk stratification and workup, treatment options for localized disease, and management of recurrent and advanced disease for clinicians who treat patients with prostate cancer.
Abstract: The NCCN Guidelines for Prostate Cancer include recommendations regarding diagnosis, risk stratification and workup, treatment options for localized disease, and management of recurrent and advanced disease for clinicians who treat patients with prostate cancer. The portions of the guidelines included herein focus on the roles of germline and somatic genetic testing, risk stratification with nomograms and tumor multigene molecular testing, androgen deprivation therapy, secondary hormonal therapy, chemotherapy, and immunotherapy in patients with prostate cancer.

1,218 citations

Journal ArticleDOI
TL;DR: Preclinical and clinical evaluations of the therapeutic value of novel specific mitogen-activated protein kinase pathway inhibitors in thyroid cancer are anticipated and this newly discovered BRAF mutation may prove to have an important impact on thyroid cancer in the clinic.
Abstract: Genetic alteration is the driving force for thyroid tumorigenesis and progression, based upon which novel approaches to the management of thyroid cancer can be developed. A recent important genetic finding in thyroid cancer is the oncogenic T1799A transversion mutation of BRAF (the gene for the B-type Raf kinase, BRAF). Since the initial report of this mutation in thyroid cancer 2 years ago, rapid advancements have been made. BRAF mutation is the most common genetic alteration in thyroid cancer, occurring in about 45% of sporadic papillary thyroid cancers (PTCs), particularly in the relatively aggressive subtypes, such as the tall-cell PTC. This mutation is mutually exclusive with other common genetic alterations, supporting its independent oncogenic role, as demonstrated by transgenic mouse studies that showed BRAF mutation-initiated development of PTC and its transition to anaplastic thyroid cancer. BRAF mutation is mutually exclusive with RET/PTC rearrangement, and also displays a reciprocal age association with this common genetic alteration in thyroid cancer. The T1799A BRAF mutation occurs exclusively in PTC and PTC-derived anaplastic thyroid cancer and is a specific diagnostic marker for this cancer when identified in cytological and histological specimens. This mutation is associated with a poorer clinicopathological outcome and is a novel independent molecular prognostic marker in the risk evaluation of thyroid cancer. Moreover, preclinical and clinical evaluations of the therapeutic value of novel specific mitogen-activated protein kinase pathway inhibitors in thyroid cancer are anticipated. This newly discovered BRAF mutation may prove to have an important impact on thyroid cancer in the clinic.

1,198 citations

Journal Article
TL;DR: Investigations compel the view that the ratio of the vital capacity to the body length, trunk length, chest circumference, surface area or weight or any combination of these measurements, is too variable to admit of any workable standard or normal value.
Abstract: These investigations and several others that have beenpublishedwithin recentyears compel us us to hold the view that the ratio of the vital capacity to the body length, trunk length, chest circumference,surfacearea or weight or any combination of thesemeasurements, is too variable to admit of any workable standardor normal value. On the other hand the vital capacity of each individual, after he had becomeaccustomedto the use of the spirometer,will be found to be subjectto but small variations as long as good health is maintained. Thereseems to beevidenceto show that a reductionin the vital capacityis ofen the first sign of a progressivedamageto the respiratorytissue.

986 citations

Journal ArticleDOI
TL;DR: A personal perspective on IDO as a nodal mediator of pathogenic inflammation and immune escape in cancer is provided to provide a conceptual foundation for the clinical development of IDO inhibitors as a novel class of immunomodulators with broad application in the treatment of advanced human cancer.
Abstract: Genetic and pharmacological studies of indoleamine 2,3-dioxygenase (IDO) have established this tryptophan catabolic enzyme as a central driver of malignant development and progression. IDO acts in tumor, stromal and immune cells to support pathogenic inflammatory processes that engender immune tolerance to tumor antigens. The multifaceted effects of IDO activation in cancer include the suppression of T and NK cells, the generation and activation of T regulatory cells and myeloid-derived suppressor cells, and the promotion of tumor angiogenesis. Mechanistic investigations have defined the aryl hydrocarbon receptor, the master metabolic regulator mTORC1 and the stress kinase Gcn2 as key effector signaling elements for IDO, which also exerts a non-catalytic role in TGF-β signaling. Small-molecule inhibitors of IDO exhibit anticancer activity and cooperate with immunotherapy, radiotherapy or chemotherapy to trigger rapid regression of aggressive tumors otherwise resistant to treatment. Notably, the dramatic antitumor activity of certain targeted therapeutics such as imatinib (Gleevec) in gastrointestinal stromal tumors has been traced in part to IDO downregulation. Further, antitumor responses to immune checkpoint inhibitors can be heightened safely by a clinical lead inhibitor of the IDO pathway that relieves IDO-mediated suppression of mTORC1 in T cells. In this personal perspective on IDO as a nodal mediator of pathogenic inflammation and immune escape in cancer, we provide a conceptual foundation for the clinical development of IDO inhibitors as a novel class of immunomodulators with broad application in the treatment of advanced human cancer.

402 citations