scispace - formally typeset
Search or ask a question
Author

Mario Ceresa

Other affiliations: University of Navarra
Bio: Mario Ceresa is an academic researcher from Pompeu Fabra University. The author has contributed to research in topics: Cochlear implant & Medicine. The author has an hindex of 13, co-authored 55 publications receiving 502 citations. Previous affiliations of Mario Ceresa include University of Navarra.


Papers
More filters
Journal ArticleDOI
TL;DR: This work aims to efficiently segment different intrauterine tissues in fetal magnetic resonance imaging (MRI) and 3D ultrasound and suggests that combining the selected 10 radiomic features per anatomy along with DeepLabV3+ or BiSeNet architectures for MRI, and PSPNet or Tiramisu for 3D US, can lead to the highest fetal / maternal tissue segmentation performance, robustness, informativeness, and heterogeneity.

14 citations

Journal ArticleDOI
TL;DR: The new emphysema quantification method presented in this report is accurate and reproducible and, thanks to its standardization method, robust to changes in the reconstruction parameters.

14 citations

Journal ArticleDOI
TL;DR: A strategy to couple the discrete biological model at the molecular /cellular level and the biomechanical finite element simulations at the tissue level and found that it can indeed simulate the evolution of clinical image biomarkers during disease progression.
Abstract: Chronic Obstructive Pulmonary Disease (COPD) is a disabling respiratory pathology, with a high prevalence and a significant economic and social cost. It is characterized by different clinical phenotypes with different risk profiles. Detecting the correct phenotype, especially for the emphysema subtype, and predicting the risk of major exacerbations are key elements in order to deliver more effective treatments. However, emphysema onset and progression are influenced by a complex interaction between the immune system and the mechanical properties of biological tissue. The former causes chronic inflammation and tissue remodeling. The latter influences the effective resistance or appropriate mechanical response of the lung tissue to repeated breathing cycles. In this work we present a multi-scale model of both aspects, coupling Finite Element (FE) and Agent Based (AB) techniques that we would like to use to predict the onset and progression of emphysema in patients. The AB part is based on existing biological models of inflammation and immunological response as a set of coupled non-linear differential equations. The FE part simulates the biomechanical effects of repeated strain on the biological tissue. We devise a strategy to couple the discrete biological model at the molecular /cellular level and the biomechanical finite element simulations at the tissue level. We tested our implementation on a public emphysema image database and found that it can indeed simulate the evolution of clinical image biomarkers during disease progression.

14 citations

Journal ArticleDOI
TL;DR: A complete automatic framework was developed to create and assess computationally CI models, focusing on the neural response of the auditory nerve fibers induced by the electrical stimulation of the implant, and results indicate that the intra-cochlear positioning of the electrode has a strong effect on the global performance of the CI.
Abstract: Cochlear implantation (CI) surgery is a very successful technique, performed on more than 300,000 people worldwide. However, since the challenge resides in obtaining an accurate surgical planning, computational models are considered to provide such accurate tools. They allow us to plan and simulate beforehand surgical procedures in order to maximally optimize surgery outcomes, and consequently provide valuable information to guide pre-operative decisions. The aim of this work is to develop and validate computational tools to completely assess the patient-specific functional outcome of the CI surgery. A complete automatic framework was developed to create and assess computationally CI models, focusing on the neural response of the auditory nerve fibers (ANF) induced by the electrical stimulation of the implant. The framework was applied to evaluate the effects of ANF degeneration and electrode intra-cochlear position on nerve activation. Results indicate that the intra-cochlear positioning of the electrode has a strong effect on the global performance of the CI. Lateral insertion provides better neural responses in case of peripheral process degeneration, and it is recommended, together with optimized intensity levels, in order to preserve the internal structures. Overall, the developed automatic framework provides an insight into the global performance of the implant in a patient-specific way. This enables to further optimize the functional performance and helps to select the best CI configuration and treatment strategy for a given patient.

9 citations

Book ChapterDOI
14 Sep 2017
TL;DR: An automatic pipeline for thrombus volume assessment is proposed, starting from its segmentation based on a Deep Convolutional Neural Network both pre-operatively and post-operative.
Abstract: Computerized Tomography Angiography (CTA) based assessment of Abdominal Aortic Aneurysms (AAA) treated with Endovascular Aneurysm Repair (EVAR) is essential during follow-up to evaluate the progress of the patient along time, comparing it to the pre-operative situation, and to detect complications. In this context, accurate assessment of the aneurysm or thrombus volume pre- and post-operatively is required. However, a quantifiable and trustworthy evaluation is hindered by the lack of automatic, robust and reproducible thrombus segmentation algorithms. We propose an automatic pipeline for thrombus volume assessment, starting from its segmentation based on a Deep Convolutional Neural Network (DCNN) both pre-operatively and post-operatively. The aim is to investigate several training approaches to evaluate their influence in the thrombus volume characterization.

9 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Medical imaging systems: Physical principles and image reconstruction algorithms for magnetic resonance tomography, ultrasound and computer tomography (CT), and applications: Image enhancement, image registration, functional magnetic resonance imaging (fMRI).

536 citations

Posted ContentDOI
22 Apr 2020-medRxiv
TL;DR: A novel COVID-19 Lung Infection Segmentation Deep Network (Inf-Net) is proposed to automatically identify infected regions from chest CT scans and outperforms most cutting-edge segmentation models and advances the state-of-the-art technology.
Abstract: Coronavirus Disease 2019 (COVID-19) spread globally in early 2020, causing the world to face an existential health crisis. Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19. However, segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues. Further, collecting a large amount of data is impractical within a short time period, inhibiting the training of a deep model. To address these challenges, a novel COVID-19 Lung Infection Segmentation Deep Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices. In our Inf-Net, a parallel partial decoder is used to aggregate the high-level features and generate a global map. Then, the implicit reverse attention and explicit edge-attention are utilized to model the boundaries and enhance the representations. Moreover, to alleviate the shortage of labeled data, we present a semi-supervised segmentation framework based on a randomly selected propagation strategy, which only requires a few labeled images and leverages primarily unlabeled data. Our semi-supervised framework can improve the learning ability and achieve a higher performance. Extensive experiments on our COVID-SemiSeg and real CT volumes demonstrate that the proposed Inf-Net outperforms most cutting-edge segmentation models and advances the state-of-the-art performance.

354 citations

01 Jan 2010

301 citations

Journal ArticleDOI
TL;DR: A fusion scheme that obtained superior results is presented, demonstrating that there is complementary information provided by the different algorithms and there is still room for further improvements in airway segmentation algorithms.
Abstract: This paper describes a framework for establishing a reference airway tree segmentation, which was used to quantitatively evaluate 15 different airway tree extraction algorithms in a standardized manner. Because of the sheer difficulty involved in manually constructing a complete reference standard from scratch, we propose to construct the reference using results from all algorithms that are to be evaluated. We start by subdividing each segmented airway tree into its individual branch segments. Each branch segment is then visually scored by trained observers to determine whether or not it is a correctly segmented part of the airway tree. Finally, the reference airway trees are constructed by taking the union of all correctly extracted branch segments. Fifteen airway tree extraction algorithms from different research groups are evaluated on a diverse set of 20 chest computed tomography (CT) scans of subjects ranging from healthy volunteers to patients with severe pathologies, scanned at different sites, with different CT scanner brands, models, and scanning protocols. Three performance measures covering different aspects of segmentation quality were computed for all participating algorithms. Results from the evaluation showed that no single algorithm could extract more than an average of 74% of the total length of all branches in the reference standard, indicating substantial differences between the algorithms. A fusion scheme that obtained superior results is presented, demonstrating that there is complementary information provided by the different algorithms and there is still room for further improvements in airway segmentation algorithms.

241 citations