scispace - formally typeset
Search or ask a question
Author

Mario Gerla

Other affiliations: Chungbuk National University, University of California, KAIST  ...read more
Bio: Mario Gerla is an academic researcher from University of California, Los Angeles. The author has contributed to research in topics: Wireless ad hoc network & Vehicular ad hoc network. The author has an hindex of 106, co-authored 997 publications receiving 54551 citations. Previous affiliations of Mario Gerla include Chungbuk National University & University of California.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper describes a self-organizing, multihop, mobile radio network which relies on a code-division access scheme for multimedia support that provides an efficient, stable infrastructure for the integration of different types of traffic in a dynamic radio network.
Abstract: This paper describes a self-organizing, multihop, mobile radio network which relies on a code-division access scheme for multimedia support. In the proposed network architecture, nodes are organized into nonoverlapping clusters. The clusters are independently controlled, and are dynamically reconfigured as the nodes move. This network architecture has three main advantages. First, it provides spatial reuse of the bandwidth due to node clustering. Second, bandwidth can be shared or reserved in a controlled fashion in each cluster. Finally, the cluster algorithm is robust in the face of topological changes caused by node motion, node failure, and node insertion/removal. Simulation shows that this architecture provides an efficient, stable infrastructure for the integration of different types of traffic in a dynamic radio network.

1,695 citations

Journal ArticleDOI
TL;DR: A multi-cluster, multi-hop packet radio network architecture for wireless adaptive mobile information systems is presented that supports multimedia traffic and relies on both time division and code division access schemes.
Abstract: A multi-cluster, multi-hop packet radio network architecture for wireless adaptive mobile information systems is presented. The proposed network supports multimedia traffic and relies on both time division and code division access schemes. This radio network is not supported by a wired infrastructure as conventional cellular systems are. Thus, it can be instantly deployed in areas with no infrastructure at all. By using a distributed clustering algorithm, nodes are organized into clusters. The clusterheads act as local coordinators to resolve channel scheduling, perform power measurement/control, maintain time division frame synchronization, and enhance the spatial reuse of time slots and codes. Moreover, to guarantee bandwidth for real time traffic, the architecture supports virtual circuits and allocates bandwidth to circuits at call setup time. The network is scalable to large numbers of nodes, and can handle mobility. Simulation experiments evaluate the performance of the proposed scheme in static and mobile environments.

1,610 citations

Proceedings ArticleDOI
01 Aug 1999
TL;DR: It is shown that group motion occurs frequently in ad hoc networks, and a novel group mobility model Reference Point Group Mobility (RPGM) is introduced to represent the relationship among mobile hosts.
Abstract: In this paper, we present a survey of various mobility models in both cellular networks and multi-hop networks We show that group motion occurs frequently in ad hoc networks, and introduce a novel group mobility model Reference Point Group Mobility (RPGM) to represent the relationship among mobile hosts RPGM can be readily applied to many existing applications Moreover, by proper choice of parameters, RPGM can be used to model several mobility models which were previously proposed One of the main themes of this paper is to investigate the impact of the mobility model on the performance of a specific network protocol or application To this end, we have applied our RPGM model to two different network protocol scenarios, clustering and routing, and have evaluated network performance under different mobility patterns and for different protocol implementations As expected, the results indicate that different mobility patterns affect the various protocols in different ways In particular, the ranking of routing algorithms is influenced by the choice of mobility pattern

1,503 citations

Proceedings ArticleDOI
01 Jul 1998
TL;DR: The paper describes the GloMoSim library, addresses a number of issues relevant to its parallelization, and presents a set of experimental results on the IBM 9076 SP, a distributed memory multicomputer.
Abstract: A number of library based parallel and sequential network simulators have been designed. The paper describes a library, called GloMoSim (Global Mobile system Simulator), for parallel simulation of wireless networks. GloMoSim has been designed to be extensible and composable: the communication protocol stack for wireless networks is divided into a set of layers, each with its own API. Models of protocols at one layer interact with those at a lower (or higher) layer only via these APIs. The modular implementation enables consistent comparison of multiple protocols at a given layer. The parallel implementation of GloMoSim can be executed using a variety of conservative synchronization protocols, which include the null message and conditional event algorithms. The paper describes the GloMoSim library, addresses a number of issues relevant to its parallelization, and presents a set of experimental results on the IBM 9076 SP, a distributed memory multicomputer. These experiments use models constructed from the library modules.

1,462 citations

Proceedings ArticleDOI
11 Jun 2001
TL;DR: This work proposes an on-demand routing scheme called split multipath routing (SMR) that establishes and utilizes multiple routes of maximally disjoint paths and uses a per-packet allocation scheme to distribute data packets into multiple paths of active sessions.
Abstract: In recent years, routing has been the most focused area in ad hoc networks research On-demand routing in particular, is widely developed in bandwidth constrained mobile wireless ad hoc networks because of its effectiveness and efficiency Most proposed on-demand routing protocols however, build and rely on a single route for each data session Whenever there is a link disconnection on the active route, the routing protocol must perform a route recovery process In QoS routing for wired networks, multiple path routing is popularly used Multiple routes are however, constructed using link-state or distance vector algorithms which are not well-suited for ad hoc networks We propose an on-demand routing scheme called split multipath routing (SMR) that establishes and utilizes multiple routes of maximally disjoint paths Providing multiple routes helps minimizing route recovery process and control message overhead Our protocol uses a per-packet allocation scheme to distribute data packets into multiple paths of active sessions This traffic distribution efficiently utilizes available network resources and prevents nodes of the route from being congested in heavily loaded traffic situations We evaluate the performance of our scheme using extensive simulation

1,325 citations


Cited by
More filters
Proceedings ArticleDOI
25 Feb 1999
TL;DR: An ad-hoc network is the cooperative engagement of a collection of mobile nodes without the required intervention of any centralized access point or existing infrastructure and the proposed routing algorithm is quite suitable for a dynamic self starting network, as required by users wishing to utilize ad- hoc networks.
Abstract: An ad-hoc network is the cooperative engagement of a collection of mobile nodes without the required intervention of any centralized access point or existing infrastructure. We present Ad-hoc On Demand Distance Vector Routing (AODV), a novel algorithm for the operation of such ad-hoc networks. Each mobile host operates as a specialized router, and routes are obtained as needed (i.e., on-demand) with little or no reliance on periodic advertisements. Our new routing algorithm is quite suitable for a dynamic self starting network, as required by users wishing to utilize ad-hoc networks. AODV provides loop-free routes even while repairing broken links. Because the protocol does not require global periodic routing advertisements, the demand on the overall bandwidth available to the mobile nodes is substantially less than in those protocols that do necessitate such advertisements. Nevertheless we can still maintain most of the advantages of basic distance vector routing mechanisms. We show that our algorithm scales to large populations of mobile nodes wishing to form ad-hoc networks. We also include an evaluation methodology and simulation results to verify the operation of our algorithm.

11,360 citations

Journal ArticleDOI
TL;DR: This work develops and analyzes low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality.
Abstract: Networking together hundreds or thousands of cheap microsensor nodes allows users to accurately monitor a remote environment by intelligently combining the data from the individual nodes. These networks require robust wireless communication protocols that are energy efficient and provide low latency. We develop and analyze low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality. LEACH includes a new, distributed cluster formation technique that enables self-organization of large numbers of nodes, algorithms for adapting clusters and rotating cluster head positions to evenly distribute the energy load among all the nodes, and techniques to enable distributed signal processing to save communication resources. Our results show that LEACH can improve system lifetime by an order of magnitude compared with general-purpose multihop approaches.

10,296 citations

Book
01 Jan 2005

9,038 citations

Journal ArticleDOI
Jeffrey O. Kephart1, David M. Chess1
TL;DR: A 2001 IBM manifesto noted the almost impossible difficulty of managing current and planned computing systems, which require integrating several heterogeneous environments into corporate-wide computing systems that extend into the Internet.
Abstract: A 2001 IBM manifesto observed that a looming software complexity crisis -caused by applications and environments that number into the tens of millions of lines of code - threatened to halt progress in computing. The manifesto noted the almost impossible difficulty of managing current and planned computing systems, which require integrating several heterogeneous environments into corporate-wide computing systems that extend into the Internet. Autonomic computing, perhaps the most attractive approach to solving this problem, creates systems that can manage themselves when given high-level objectives from administrators. Systems manage themselves according to an administrator's goals. New components integrate as effortlessly as a new cell establishes itself in the human body. These ideas are not science fiction, but elements of the grand challenge to create self-managing computing systems.

6,527 citations

Journal ArticleDOI

6,278 citations