scispace - formally typeset
Search or ask a question
Author

Mario J. Duran

Other affiliations: University of Seville
Bio: Mario J. Duran is an academic researcher from University of Málaga. The author has contributed to research in topics: Model predictive control & Induction motor. The author has an hindex of 39, co-authored 147 publications receiving 5004 citations. Previous affiliations of Mario J. Duran include University of Seville.


Papers
More filters
Journal ArticleDOI
TL;DR: The main objective of the two-part survey named ‘Recent Advances in the Design, Modeling, and Control of Multiphase Machines’ is to present relevant contributions to encourage and guide new advances and developments in the field.
Abstract: The main objective of this two-part state-of-the-art paper called “Recent Advances in the Design, Modeling, and Control of Multiphase Machines” is to present latest contributions in the multiphase machines' field. The first part of this paper focuses on the recent progress in the design, modeling, and control, whereas the drive is in healthy operation. This second part presents relevant contributions in two not analyzed fields. The first is in relation with the use of the additional degrees of freedom of multiphase machines and the exploitation of their fault-tolerant capabilities without adding extra hardware. The second one analyzes multiphase generation, particularly in grid-connected wind energy conversion systems and stand-alone applications. Recent progresses are shown and open challenges and future research directions are discussed.

607 citations

Journal ArticleDOI
27 Nov 2013
TL;DR: In this article, a study of postfault control for an asymmetrical six-phase induction machine with single and two isolated neutral points, during a single open-phase fault is presented.
Abstract: The paper presents a study of postfault control for an asymmetrical six-phase induction machine with single and two isolated neutral points, during single open-phase fault. Postfault control is based on the normal decoupling (Clarke) transformation, so that reconfiguration of the controller is minimized. Effect of the single open-phase fault on the machine equations under this control structure is discussed. Different modes of postfault operation are analyzed and are further compared in terms of the achievable torque and stator winding losses. Validity of the analysis is verified using experimental results obtained from a six-phase induction motor drive prototype.

286 citations

Journal ArticleDOI
TL;DR: This paper proposes a fault-tolerant speed control for five-phase induction motor drives with the ability to run the system before and after an open-phase fault condition using an FCS-MPC strategy.
Abstract: Fault tolerance is one of the most interesting features in stand-alone electric propulsion systems. Multiphase induction motor drives are presented like a better alternative to their three-phase counterparts because of their capability to withstand faulty situations, ensuring the postfault operation of the drive. Finite-control set model-based predictive control (FCS-MPC) has been introduced in the last decade like an interesting alternative to conventional controllers for the electrical torque and current regulation of multiphase drives. However, FCS-MPC strategies for multiphase drives with the ability to manage pre- and postfault operations have not been addressed at all. This paper proposes a fault-tolerant speed control for five-phase induction motor drives with the ability to run the system before and after an open-phase fault condition using an FCS-MPC strategy. Experimental results are provided in order to validate the functionality of the proposed control method, maintaining rated currents and ensuring fast and ripple-free torque response.

229 citations

Journal ArticleDOI
TL;DR: The amount of new knowledge acquired since the publication of the first Special Section in 2008 has meant that it was not possible to provide a complete and thorough survey of the field in a single review paper, so it seemed appropriate to revisit the area and organize this Special Section as a sequel to the first.
Abstract: Although the concept of a multiphase drive system dates back to the middle of the 20th century, the initial pace of development was rather slow, as witnessed by the first two surveys of the area published in the beginning of this century. However, considerably new developments have resulted in the last decade of the 20th century and the beginning of this century, leading to an authoritative survey of the asymmetrical six-phase drive control and subsequently of the review of the complete area. This also initiated the organization and subsequent publication of the first IEEE Transactions on Industrial Electronics "Special Section on Multiphase Machines and Drives" in May 2008, which commenced with another survey paper, and that contained 12 original research papers. Since the publication of this Special Section in May 2008, the level of interest and pace of developments in the area have further accelerated and substantial new knowledge has been generatedwith an ever-increasing number of published research papers and reported new industrial applications. Such a trend has been emphasized in a recent paper. It therefore seemed appropriate to revisit the area and organize this Special Section as a sequel to the first one. The call for the Special Section papers resulted in 51 submissions, almost twice as many as the total back in 2008, thus confirming a substantial growth of the area. Indeed, the amount of new knowledge acquired since the publication of the first Special Section in 2008 has meant that it was not possible to provide a complete and thorough survey of the field in a single review paper.

218 citations

Journal ArticleDOI
TL;DR: A model-based predictive control (MBPC) for the current regulation of asymmetrical dual three-phase AC machines is analyzed and overcomes the difficulties of multiphase current control, avoiding complex controllers and modulation techniques, but at the expense of an increased computational cost.
Abstract: Multiphase (more than three phases) drives possess interesting advantages over conventional three-phase drives. Over the last years, various topics related to the extension of the classical control schemes to these specifics drives have been covered in depth in literature, such as vector control of a six-phase induction machine with two sets of three-phase stator windings spatially shifted by 30 electrical degrees (also called asymmetrical dual three-phase ac machine). In this paper, a model-based predictive control (MBPC) for the current regulation of asymmetrical dual three-phase AC machines is analyzed. MBPC overcomes the difficulties of multiphase current control, avoiding complex controllers and modulation techniques, but at the expense of an increased computational cost. Simulation results are provided to examine the potential of the control method. The influence of the number of voltage vectors considered to evaluate the predictive model is studied, and different cost functions are analyzed. The computation time needed for the implementation of the control method is discussed to prove its real-time feasibility. Finally, experimental results are given to illustrate the capability of the control method.

208 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An attempt is made to provide a brief review of the current state of the art in the area of variable-speed drives, addressing the reasons for potential use of multiphase rather than three-phase drives and the available approaches to multiphases machine designs.
Abstract: Although the concept of variable-speed drives, based on utilization of multiphase machines, dates back to the late 1960s, it was not until the mid- to late 1990s that multiphase drives became serious contenders for various applications. These include electric ship propulsion, locomotive traction, electric and hybrid electric vehicles, ldquomore-electricrdquo aircraft, and high-power industrial applications. As a consequence, there has been a substantial increase in the interest for such drive systems worldwide, resulting in a huge volume of work published during the last ten years. An attempt is made in this paper to provide a brief review of the current state of the art in the area. After addressing the reasons for potential use of multiphase rather than three-phase drives and the available approaches to multiphase machine designs, various control schemes are surveyed. This is followed by a discussion of the multiphase voltage source inverter control. Various possibilities for the use of additional degrees of freedom that exist in multiphase machines are further elaborated. Finally, multiphase machine applications in electric energy generation are addressed.

1,683 citations

Journal ArticleDOI
TL;DR: A detailed overview of the state-of-the-art in multiphase variable-speed motor drives can be found in this article, where the authors provide a detailed survey of the control strategies for five-phase and asymmetrical six-phase induction motor drives, as well as the approaches to the design of fault tolerant strategies for post-fault drive operation.
Abstract: The area of multiphase variable-speed motor drives in general and multiphase induction motor drives in particular has experienced a substantial growth since the beginning of this century. Research has been conducted worldwide and numerous interesting developments have been reported in the literature. An attempt is made to provide a detailed overview of the current state-of-the-art in this area. The elaborated aspects include advantages of multiphase induction machines, modelling of multiphase induction machines, basic vector control and direct torque control schemes and PWM control of multiphase voltage source inverters. The authors also provide a detailed survey of the control strategies for five-phase and asymmetrical six-phase induction motor drives, as well as an overview of the approaches to the design of fault tolerant strategies for post-fault drive operation, and a discussion of multiphase multi-motor drives with single inverter supply. Experimental results, collected from various multiphase induction motor drive laboratory rigs, are also included to facilitate the understanding of the drive operation.

1,445 citations

Journal ArticleDOI
TL;DR: The paper shows how the use of FCS-MPC provides a simple and efficient computational realization for different control objectives in Power Electronics.
Abstract: This paper addresses to some of the latest contributions on the application of Finite Control Set Model Predictive Control (FCS-MPC) in Power Electronics. In FCS-MPC , the switching states are directly applied to the power converter, without the need of an additional modulation stage. The paper shows how the use of FCS-MPC provides a simple and efficient computational realization for different control objectives in Power Electronics. Some applications of this technology in drives, active filters, power conditioning, distributed generation and renewable energy are covered. Finally, attention is paid to the discussion of new trends in this technology and to the identification of open questions and future research topics.

1,331 citations

01 Jan 2008
TL;DR: By J. Biggs and C. Tang, Maidenhead, England; Open University Press, 2007.
Abstract: by J. Biggs and C. Tang, Maidenhead, England, Open University Press, 2007, 360 pp., £29.99, ISBN-13: 978-0-335-22126-4

938 citations

Journal ArticleDOI
TL;DR: The problem is described, the solution to this issue is clearly explained using a three-phase inverter as an example, and experimental results to validate this solution are shown.
Abstract: When control schemes based on finite control set model predictive control are experimentally implemented, a large amount of calculations is required, introducing a considerable time delay in the actuation. This delay can deteriorate the performance of the system if not considered in the design of the controller. In this paper, the problem is described, and the solution to this issue is clearly explained using a three-phase inverter as an example. Experimental results to validate this solution are shown.

910 citations