scispace - formally typeset
Search or ask a question
Author

Mário J. F. Calvete

Bio: Mário J. F. Calvete is an academic researcher from University of Coimbra. The author has contributed to research in topics: Porphyrin & Catalysis. The author has an hindex of 28, co-authored 102 publications receiving 2580 citations. Previous affiliations of Mário J. F. Calvete include University of Padua & University of Tübingen.


Papers
More filters
Journal ArticleDOI
TL;DR: This Review gives emphasis to the nonlinear optical properties of photoactive materials for the function of optical power limiting and describes the known mechanisms of optical limiting for the different types of materials.
Abstract: The control of luminous radiation has extremely important implications for modern and future technologies as well as in medicine. In this Review, we detail chemical structures and their relevant photophysical features for various groups of materials, including organic dyes such as metalloporphyrins and metallophthalocyanines (and derivatives), other common organic materials, mixed metal complexes and clusters, fullerenes, dendrimeric nanocomposites, polymeric materials (organic and/or inorganic), inorganic semiconductors, and other nanoscopic materials, utilized or potentially useful for the realization of devices able to filter in a smart way an external radiation. The concept of smart is referred to the characteristic of those materials that are capable to filter the radiation in a dynamic way without the need of an ancillary system for the activation of the required transmission change. In particular, this Review gives emphasis to the nonlinear optical properties of photoactive materials for the functi...

424 citations

Journal ArticleDOI
TL;DR: In this paper, an overview of optical limiting properties of materials like porphyrins and phthalocyanines is given, with a special attention to the modulation of these materials aiming to achieve effective systems in terms of OL performance through the appropriate combination and modulation of several structural components.

406 citations

Journal ArticleDOI
TL;DR: This review highlights the most relevant concepts and accounts regarding general synthetic procedures for binaphthyl-based mono- and bidentate phosphites and phosphines as ligands in enantioselective metal-catalysed reactions.
Abstract: The development of large scale synthesis of enantiopure and thermally stable (R)- and (S)-BINOL molecules constitutes a key milestone in the field of asymmetric catalysis. Particularly, a great variety of chiral binaphthyl-based phosphorus compounds, herein represented by phosphite and phosphine classes, have earned considerable relevance due to their versatility as ligands in enantioselective metal-catalysed reactions, allowing the preparation of optically active products with the desired enantiopurity. This review highlights the most relevant concepts and accounts regarding general synthetic procedures for binaphthyl-based mono- and bidentate phosphites and phosphines. Furthermore, the search for environmentally benign chemical catalytic processes compelled us to also give special attention to the functionalisation of binaphthyl-based phosphorus ligands for use in alternative reaction media. When available, a critical selection of their applications in catalysis is briefly assessed.

118 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyze and discuss the literature concerning the application of metal-based hybrid materials as heterogeneous photocatalysts for downstream depletion of antibiotics through advanced oxidation processes (AOP) using semiconductor photosensitization or photo-Fenton oxidation processes.

115 citations

Journal ArticleDOI
TL;DR: A review of the use of solely molecular oxygen as an environmentally benign oxidant source, in oxidation reactions catalyzed by bio-inspired metalloporphyrin analogues can be found in this article.
Abstract: The utilization of metalloporphyrins as bioinspired oxidation catalysts is an evolving topic of research. By understanding the cytochrome P-450 mechanism of action, chemists have been able to successfully mimic several types of oxidation reactions using metalloporphyrins as catalysts. At first, homogeneous systems presented the most amenable strategy for oxidizing a vast array of substrates; however, current environmental concerns have directed research in this field to the design, synthesis, and application of heterogeneous catalysts, as well as avoiding the use of highly pollutant co-oxidants and/or co-catalysts. Herein, we review the past decade (from 2008) concerning the use of solely molecular oxygen as an environmentally benign oxidant source, in oxidation reactions catalyzed by bioinspired metalloporphyrin analogues. We did not intend to create a comprehensive review; instead we highlight the most important and illustrative examples for this period. We emphasize the application of such catalysts on...

109 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The current status and possible opportunities for ROS generation for cancer therapy are summarized and it is hoped this review will spur pre-clinical research and clinical practice for ROS-mediated tumour treatments.
Abstract: The reactive oxygen species (ROS)-mediated mechanism is the major cause underlying the efficacy of photodynamic therapy (PDT). The PDT procedure is based on the cascade of synergistic effects between light, a photosensitizer (PS) and oxygen, which greatly favors the spatiotemporal control of the treatment. This procedure has also evoked several unresolved challenges at different levels including (i) the limited penetration depth of light, which restricts traditional PDT to superficial tumours; (ii) oxygen reliance does not allow PDT treatment of hypoxic tumours; (iii) light can complicate the phototherapeutic outcomes because of the concurrent heat generation; (iv) specific delivery of PSs to sub-cellular organelles for exerting effective toxicity remains an issue; and (v) side effects from undesirable white-light activation and self-catalysation of traditional PSs. Recent advances in nanotechnology and nanomedicine have provided new opportunities to develop ROS-generating systems through photodynamic or non-photodynamic procedures while tackling the challenges of the current PDT approaches. In this review, we summarize the current status and discuss the possible opportunities for ROS generation for cancer therapy. We hope this review will spur pre-clinical research and clinical practice for ROS-mediated tumour treatments.

1,305 citations

Journal ArticleDOI
TL;DR: The general overview of the field and the background for appropriate modelling of the physical phenomena are provided and the current state of the art and most recent applications of plasmon resonance in Au NPs are reported.
Abstract: In the last two decades, plasmon resonance in gold nanoparticles (Au NPs) has been the subject of intense research efforts. Plasmon physics is intriguing and its precise modelling proved to be challenging. In fact, plasmons are highly responsive to a multitude of factors, either intrinsic to the Au NPs or from the environment, and recently the need emerged for the correction of standard electromagnetic approaches with quantum effects. Applications related to plasmon absorption and scattering in Au NPs are impressively numerous, ranging from sensing to photothermal effects to cell imaging. Also, plasmon-enhanced phenomena are highly interesting for multiple purposes, including, for instance, Raman spectroscopy of nearby analytes, catalysis, or sunlight energy conversion. In addition, plasmon excitation is involved in a series of advanced physical processes such as non-linear optics, optical trapping, magneto-plasmonics, and optical activity. Here, we provide the general overview of the field and the background for appropriate modelling of the physical phenomena. Then, we report on the current state of the art and most recent applications of plasmon resonance in Au NPs.

1,205 citations

Journal ArticleDOI
TL;DR: This review outlines the recent advances in the field of self-healing polymers, and the primary classes are the covalent bonding, supramolecular assemblies, ionic interactions, chemo-mechanical self- healing, and shape memory polymers.
Abstract: Inspired by nature, self-healing materials represent the forefront of recent developments in materials chemistry and engineering. This review outlines the recent advances in the field of self-healing polymers. The first part discusses thermodynamic requirements for self-healing networks in the context of conformation changes that contribute to the Gibbs free energy. The chain flexibility significantly contributes to the entropy changes, whereas the heat of reaction and the external energy input are the main contributors to enthalpy changes. The second part focuses on chemical reactions that lead to self-healing, and the primary classes are the covalent bonding, supramolecular assemblies, ionic interactions, chemo-mechanical self-healing, and shape memory polymers. The third part outlines recent advances using encapsulation, remote self-healing and the role of shape memory polymers. Recent developments in the field of self-healing polymers undeniably indicate that the main challenge will be the designing of high glass transition (Tg) functional materials, which also exhibit stimuli-responsive attributes. Build-in controllable hierarchical heterogeneousness at various length scales capable of remote self-healing by physical and chemical responses will be essential in designing future materials of the 21st century.

1,061 citations