scispace - formally typeset
Search or ask a question
Author

Mário M. Espírito-Santo

Other affiliations: Unimontes
Bio: Mário M. Espírito-Santo is an academic researcher from Universidade Federal de Minas Gerais. The author has contributed to research in topics: Tropical and subtropical dry broadleaf forests & Species richness. The author has an hindex of 23, co-authored 53 publications receiving 2650 citations. Previous affiliations of Mário M. Espírito-Santo include Unimontes.


Papers
More filters
Journal ArticleDOI
Lourens Poorter1, Frans Bongers1, T. Mitchell Aide2, Angelica M. Almeyda Zambrano3, Patricia Balvanera4, Justin M. Becknell5, Vanessa K. Boukili6, Pedro H. S. Brancalion7, Eben N. Broadbent3, Robin L. Chazdon6, Dylan Craven8, Dylan Craven9, Jarcilene S. Almeida-Cortez10, George A. L. Cabral10, Ben H. J. de Jong, Julie S. Denslow11, Daisy H. Dent12, Daisy H. Dent8, Saara J. DeWalt13, Juan Manuel Dupuy, Sandra M. Durán14, Mário M. Espírito-Santo, María C. Fandiño, Ricardo Gomes César7, Jefferson S. Hall8, José Luis Hernández-Stefanoni, Catarina C. Jakovac15, Catarina C. Jakovac1, André Braga Junqueira15, André Braga Junqueira1, Deborah K. Kennard16, Susan G. Letcher17, Juan Carlos Licona, Madelon Lohbeck18, Madelon Lohbeck1, Erika Marin-Spiotta19, Miguel Martínez-Ramos4, Paulo Eduardo dos Santos Massoca15, Jorge A. Meave4, Rita C. G. Mesquita15, Francisco Mora4, Rodrigo Muñoz4, Robert Muscarella20, Robert Muscarella21, Yule Roberta Ferreira Nunes, Susana Ochoa-Gaona, Alexandre Adalardo de Oliveira7, Edith Orihuela-Belmonte, Marielos Peña-Claros1, Eduardo A. Pérez-García4, Daniel Piotto, Jennifer S. Powers22, Jorge Rodríguez-Velázquez4, I. Eunice Romero-Pérez4, Jorge Ruiz23, Jorge Ruiz24, Juan Saldarriaga, Arturo Sanchez-Azofeifa14, Naomi B. Schwartz21, Marc K. Steininger, Nathan G. Swenson25, Marisol Toledo, María Uriarte21, Michiel van Breugel26, Michiel van Breugel27, Michiel van Breugel8, Hans van der Wal28, Maria das Dores Magalhães Veloso, Hans F. M. Vester29, Alberto Vicentini15, Ima Célia Guimarães Vieira30, Tony Vizcarra Bentos15, G. Bruce Williamson15, G. Bruce Williamson31, Danaë M. A. Rozendaal6, Danaë M. A. Rozendaal1, Danaë M. A. Rozendaal32 
11 Feb 2016-Nature
TL;DR: A biomass recovery map of Latin America is presented, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth and will support policies to minimize forest loss in areas where biomass resilience is naturally low and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.
Abstract: Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.

724 citations

Journal ArticleDOI
Robin L. Chazdon1, Robin L. Chazdon2, Eben N. Broadbent3, Danaë M. A. Rozendaal1, Danaë M. A. Rozendaal4, Danaë M. A. Rozendaal5, Frans Bongers5, Angelica M. Almeyda Zambrano3, T. Mitchell Aide6, Patricia Balvanera7, Justin M. Becknell8, Vanessa K. Boukili1, Pedro H. S. Brancalion9, Dylan Craven10, Dylan Craven11, Jarcilene S. Almeida-Cortez12, George A. L. Cabral12, Ben de Jong, Julie S. Denslow13, Daisy H. Dent14, Daisy H. Dent10, Saara J. DeWalt15, Juan Manuel Dupuy, Sandra M. Durán16, Mário M. Espírito-Santo, María C. Fandiño, Ricardo Gomes César9, Jefferson S. Hall10, José Luis Hernández-Stefanoni, Catarina C. Jakovac5, Catarina C. Jakovac17, André Braga Junqueira5, André Braga Junqueira17, Deborah K. Kennard18, Susan G. Letcher19, Madelon Lohbeck5, Madelon Lohbeck20, Miguel Martínez-Ramos7, Paulo Eduardo dos Santos Massoca17, Jorge A. Meave7, Rita C. G. Mesquita17, Francisco Mora7, Rodrigo Muñoz7, Robert Muscarella21, Robert Muscarella22, Yule Roberta Ferreira Nunes, Susana Ochoa-Gaona, Edith Orihuela-Belmonte, Marielos Peña-Claros5, Eduardo A. Pérez-García7, Daniel Piotto, Jennifer S. Powers23, Jorge Rodríguez-Velázquez7, Isabel Eunice Romero-Pérez7, Jorge Ruiz24, Jorge Ruiz25, Juan Saldarriaga, Arturo Sanchez-Azofeifa16, Naomi B. Schwartz21, Marc K. Steininger26, Nathan G. Swenson26, María Uriarte21, Michiel van Breugel27, Michiel van Breugel28, Michiel van Breugel10, Hans van der Wal29, Hans van der Wal30, Maria das Dores Magalhães Veloso, Hans F. M. Vester, Ima Célia Guimarães Vieira31, Tony Vizcarra Bentos17, G. Bruce Williamson32, G. Bruce Williamson17, Lourens Poorter5 
TL;DR: This study estimates the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades to guide national-level forest-based carbon mitigation plans.
Abstract: Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km2 of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services.

419 citations

Journal ArticleDOI
Danaë M. A. Rozendaal, Frans Bongers1, T. Mitchell Aide2, Esteban Álvarez-Dávila, Nataly Ascarrunz, Patricia Balvanera3, Justin M. Becknell4, Tony Vizcarra Bentos5, Pedro H. S. Brancalion6, George A. L. Cabral7, Sofia Calvo-Rodriguez8, Jérôme Chave9, Ricardo Gomes César6, Robin L. Chazdon10, Robin L. Chazdon11, Robin L. Chazdon12, Richard Condit13, Jorn S. Dallinga1, Jarcilene S. Almeida-Cortez7, Ben H. J. de Jong, Alexandre Adalardo de Oliveira6, Julie S. Denslow14, Daisy H. Dent15, Daisy H. Dent13, Saara J. DeWalt16, Juan Manuel Dupuy, Sandra M. Durán8, Lo c Paul Dutrieux17, Lo c Paul Dutrieux1, Mário M. Espírito-Santo, María C. Fandiño, G. Wilson Fernandes18, Bryan Finegan19, Hernando García20, Noel Gonzalez, Vanessa Granda Moser, Jefferson S. Hall13, José Luis Hernández-Stefanoni, Stephen P. Hubbell13, Catarina C. Jakovac5, Catarina C. Jakovac21, Catarina C. Jakovac10, Alma Johanna Hernández20, André Braga Junqueira10, André Braga Junqueira1, André Braga Junqueira21, Deborah K. Kennard22, Denis Larpin, Susan G. Letcher23, Juan Carlos Licona, Edwin Lebrija-Trejos24, Erika Marin-Spiotta25, Miguel Martínez-Ramos3, Paulo Eduardo dos Santos Massoca5, Jorge A. Meave3, Rita C. G. Mesquita5, Francisco Mora3, Sandra Cristina Müller26, Rodrigo Muñoz3, Silvio Nolasco de Oliveira Neto27, Natalia Norden20, Yule Roberta Ferreira Nunes, Susana Ochoa-Gaona, Edgar Ortiz-Malavassi28, Rebecca Ostertag, Marielos Peña-Claros1, Eduardo A. Pérez-García3, Daniel Piotto, Jennifer S. Powers29, José Reinaldo Aguilar-Cano20, Susana Rodríguez-Buriticá20, Jorge Rodríguez-Velázquez3, Marco Antonio Romero-Romero3, Jorge Ruiz30, Jorge Ruiz31, Arturo Sanchez-Azofeifa8, Arlete Silva de Almeida32, Whendee L. Silver33, Naomi B. Schwartz34, William Wayt Thomas35, Marisol Toledo, Ma ia Uríarte34, Everardo Valadares de Sá Barreto Sampaio7, Michiel van Breugel36, Michiel van Breugel13, Michiel van Breugel37, Hans van der Wal38, Sebastião Venâncio Martins27, Maria das Dores Magalhães Veloso, Henricus Franciscus M. Vester39, Alberto Vicentini5, Ima Célia Guimarães Vieira32, Pedro Manuel Villa27, G. Bruce Williamson40, G. Bruce Williamson5, Kátia Janaina Zanini26, Jess K. Zimmerman41, Lourens Poorter1 
TL;DR: This work assesses how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics.
Abstract: Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition. Secondary forests take a median time of five decades to recover the species richness of old-growth forest (80% recovery after 20 years) based on rarefaction analysis. Full recovery of species composition takes centuries (only 34% recovery after 20 years). A dual strategy that maintains both old-growth forests and species-rich secondary forests is therefore crucial for biodiversity conservation in human-modified tropical landscapes.

273 citations

Journal ArticleDOI
TL;DR: There was a progressive increase in tree richness and all tree structural traits from early to late stages, as well as marked changes in tree species composition and dominance in a seasonally dry tropical forest.
Abstract: We investigated changes in species composition and structure of tree and liana communities along a successional gradient in a seasonally dry tropical forest. There was a progressive increase in tree richness and all tree structural traits from early to late stages, as well as marked changes in tree species composition and dominance. This pattern is probably related to pasture management practices such as ploughing, which remove tree roots and preclude regeneration by resprouting. On the other hand, liana density decreased from intermediate to late stages, showing a negative correlation with tree density. The higher liana abundance in intermediate stage is probably due to a balanced availability of support and light availability, since these variables may show opposite trends during forest growth. Predicted succession models may represent extremes in a continuum of possible successional pathways strongly influenced by land use history, climate, soil type, and by the outcomes of tree–liana interactions.

168 citations


Cited by
More filters
Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

Journal ArticleDOI
Lourens Poorter1, Frans Bongers1, T. Mitchell Aide2, Angelica M. Almeyda Zambrano3, Patricia Balvanera4, Justin M. Becknell5, Vanessa K. Boukili6, Pedro H. S. Brancalion7, Eben N. Broadbent3, Robin L. Chazdon6, Dylan Craven8, Dylan Craven9, Jarcilene S. Almeida-Cortez10, George A. L. Cabral10, Ben H. J. de Jong, Julie S. Denslow11, Daisy H. Dent9, Daisy H. Dent12, Saara J. DeWalt13, Juan Manuel Dupuy, Sandra M. Durán14, Mário M. Espírito-Santo, María C. Fandiño, Ricardo Gomes César7, Jefferson S. Hall9, José Luis Hernández-Stefanoni, Catarina C. Jakovac15, Catarina C. Jakovac1, André Braga Junqueira1, André Braga Junqueira15, Deborah K. Kennard16, Susan G. Letcher17, Juan Carlos Licona, Madelon Lohbeck1, Madelon Lohbeck18, Erika Marin-Spiotta19, Miguel Martínez-Ramos4, Paulo Eduardo dos Santos Massoca15, Jorge A. Meave4, Rita C. G. Mesquita15, Francisco Mora4, Rodrigo Muñoz4, Robert Muscarella20, Robert Muscarella21, Yule Roberta Ferreira Nunes, Susana Ochoa-Gaona, Alexandre Adalardo de Oliveira7, Edith Orihuela-Belmonte, Marielos Peña-Claros1, Eduardo A. Pérez-García4, Daniel Piotto, Jennifer S. Powers22, Jorge Rodríguez-Velázquez4, I. Eunice Romero-Pérez4, Jorge Ruiz23, Jorge Ruiz24, Juan Saldarriaga, Arturo Sanchez-Azofeifa14, Naomi B. Schwartz21, Marc K. Steininger, Nathan G. Swenson25, Marisol Toledo, María Uriarte21, Michiel van Breugel26, Michiel van Breugel27, Michiel van Breugel9, Hans van der Wal28, Maria das Dores Magalhães Veloso, Hans F. M. Vester29, Alberto Vicentini15, Ima Célia Guimarães Vieira30, Tony Vizcarra Bentos15, G. Bruce Williamson15, G. Bruce Williamson31, Danaë M. A. Rozendaal6, Danaë M. A. Rozendaal32, Danaë M. A. Rozendaal1 
11 Feb 2016-Nature
TL;DR: A biomass recovery map of Latin America is presented, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth and will support policies to minimize forest loss in areas where biomass resilience is naturally low and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.
Abstract: Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.

724 citations

Journal ArticleDOI
13 Oct 2017-Science
TL;DR: 12 years of MODIS satellite data are used to quantify net annual changes in the aboveground carbon density of tropical woody live vegetation, providing direct, measurement-based evidence that the world’s tropical forests are a net carbon source.
Abstract: The carbon balance of tropical ecosystems remains uncertain, with top-down atmospheric studies suggesting an overall sink and bottom-up ecological approaches indicating a modest net source. Here we use 12 years (2003 to 2014) of MODIS pantropical satellite data to quantify net annual changes in the aboveground carbon density of tropical woody live vegetation, providing direct, measurement-based evidence that the world’s tropical forests are a net carbon source of 425.2 ± 92.0 teragrams of carbon per year (Tg C year –1 ). This net release of carbon consists of losses of 861.7 ± 80.2 Tg C year –1 and gains of 436.5 ± 31.0 Tg C year –1 . Gains result from forest growth; losses result from deforestation and from reductions in carbon density within standing forests (degradation or disturbance), with the latter accounting for 68.9% of overall losses.

537 citations