scispace - formally typeset
Search or ask a question
Author

Mario Szegedy

Other affiliations: University of Illinois at Chicago, University of Chicago, AT&T  ...read more
Bio: Mario Szegedy is an academic researcher from Rutgers University. The author has contributed to research in topics: Quantum algorithm & Boolean function. The author has an hindex of 42, co-authored 138 publications receiving 13719 citations. Previous affiliations of Mario Szegedy include University of Illinois at Chicago & University of Chicago.


Papers
More filters
Journal ArticleDOI
TL;DR: It is proved that no MAX SNP-hard problem has a polynomial time approximation scheme, unless NP = P, and there exists a positive ε such that approximating the maximum clique size in an N-vertex graph to within a factor of Nε is NP-hard.
Abstract: We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probability 1 (i.e., for every choice of its random string). For strings not in the language, the verifier rejects every provided “proof” with probability at least 1/2. Our result builds upon and improves a recent result of Arora and Safra [1998] whose verifiers examine a nonconstant number of bits in the proof (though this number is a very slowly growing function of the input length).As a consequence, we prove that no MAX SNP-hard problem has a polynomial time approximation scheme, unless NP = P. The class MAX SNP was defined by Papadimitriou and Yannakakis [1991] and hard problems for this class include vertex cover, maximum satisfiability, maximum cut, metric TSP, Steiner trees and shortest superstring. We also improve upon the clique hardness results of Feige et al. [1996] and Arora and Safra [1998] and show that there exists a positive e such that approximating the maximum clique size in an N-vertex graph to within a factor of Ne is NP-hard.

1,501 citations

Journal ArticleDOI
Noga Alon1, Yossi Matias1, Mario Szegedy1
TL;DR: In this paper, the authors considered the space complexity of randomized algorithms that approximate the frequency moments of a sequence, where the elements of the sequence are given one by one and cannot be stored.

1,456 citations

Proceedings ArticleDOI
01 Jul 1996
TL;DR: It turns out that the numbers F0;F1 and F2 can be approximated in logarithmic space, whereas the approximation of Fk for k 6 requires n (1) space.
Abstract: The frequency moments of a sequence containing mi elements of type i, for 1 i n, are the numbers Fk = P n=1 m k . We consider the space complexity of randomized algorithms that approximate the numbers Fk, when the elements of the sequence are given one by one and cannot be stored. Surprisingly, it turns out that the numbers F0;F1 and F2 can be approximated in logarithmic space, whereas the approximation of Fk for k 6 requires n (1) space. Applications to data bases are mentioned as well.

1,279 citations

Proceedings ArticleDOI
24 Oct 1992
TL;DR: Agarwal et al. as discussed by the authors showed that the MAXSNP-hard problem does not have polynomial-time approximation schemes unless P=NP, and for some epsilon > 0 the size of the maximal clique in a graph cannot be approximated within a factor of n/sup 1/ε / unless P = NP.
Abstract: The class PCP(f(n),g(n)) consists of all languages L for which there exists a polynomial-time probabilistic oracle machine that used O(f(n)) random bits, queries O(g(n)) bits of its oracle and behaves as follows: If x in L then there exists an oracle y such that the machine accepts for all random choices but if x not in L then for every oracle y the machine rejects with high probability. Arora and Safra (1992) characterized NP as PCP(log n, (loglogn)/sup O(1)/). The authors improve on their result by showing that NP=PCP(logn, 1). The result has the following consequences: (1) MAXSNP-hard problems (e.g. metric TSP, MAX-SAT, MAX-CUT) do not have polynomial time approximation schemes unless P=NP; and (2) for some epsilon >0 the size of the maximal clique in a graph cannot be approximated within a factor of n/sup epsilon / unless P=NP. >

1,277 citations

Proceedings ArticleDOI
03 Jan 1991
TL;DR: WJe show that every nondeterministic computational task S(Z, y), defined as a polynomial time relation between the instance x, representing the input and output combined, and the witness y can be modified to a task S such that each instance/witness pair becomes checkable in poly!ogariihmic Monte Carlo time.
Abstract: Motivated by Manuel Blum’s concept of inst ante checking, we consider new, very fast and generic mechanisms of checking computations. Our results exploit recent advances in interactive proof protocols [LFKN], [Sh], and especially the MIP = NEXP protocol from [BFL]. WJe show that every nondeterministic computational task S(Z, y), defined as a polynomial time relation between the instance x, representing the input and output combined, and the witness y can be modified to a task S such that: (i) the same instances remain accepted; (ii) each instance/witness pair becomes checkable in poly!ogariihmic Monte Carlo time; and (iii) a witness satisfying S’ can be computed in polynomial time from a witness satisfying S. Here the instance and the description of S have to be provided in error-correcting code (since the checker will not notice slight changes). A modification of the MIP proof was required to achieve polynomial time in (iii); the earlier technique yields N“(*OglOg’1 time only. This result becomes significant if software and hardware reliability are regarded aa a considerable cost factor. The polylogarithmic checker is the only part of the system that needs to be trusted; it can be hard wired. (We use just one Checker for all problems!) The checker is tiny and so presumably can be optimized and checked off-line at a modest cost. In this setup, a single reliable PC can monitor the operation of a herd of supercomputers working with possibly extremely powerful but unreliable software and untested hardware. 1Research partially supported by NSF Grant CCR-871OO78. Email: laci@cs.uchicago. edu 2Rese~& partiay supported by NSF Grant CCR-SMXI$XEK5. E-mail: fortnow@cs.uc&cago. edu 3Supported by NSF grant CCR-SJC115276. E-mail: Lnd@cs.bu.edu 4111 cummington St., Boston MA 02215. 5E-mail: mario@cs.uchicago .edu ~1100 E 58th St, Chicago IL 60637. Permission to copy without fee all or part of this msterisl is granted provided that tie copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee snd/or specific permission. @ 1991 ACM 089791-397-31911000410021 $1.50 Leonid A. Levin 3

724 citations


Cited by
More filters
Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Journal ArticleDOI
TL;DR: If the objects of interest are sparse in a fixed basis or compressible, then it is possible to reconstruct f to within very high accuracy from a small number of random measurements by solving a simple linear program.
Abstract: Suppose we are given a vector f in a class FsubeRopfN , e.g., a class of digital signals or digital images. How many linear measurements do we need to make about f to be able to recover f to within precision epsi in the Euclidean (lscr2) metric? This paper shows that if the objects of interest are sparse in a fixed basis or compressible, then it is possible to reconstruct f to within very high accuracy from a small number of random measurements by solving a simple linear program. More precisely, suppose that the nth largest entry of the vector |f| (or of its coefficients in a fixed basis) obeys |f|(n)lesRmiddotn-1p/, where R>0 and p>0. Suppose that we take measurements yk=langf# ,Xkrang,k=1,...,K, where the Xk are N-dimensional Gaussian vectors with independent standard normal entries. Then for each f obeying the decay estimate above for some 0

6,342 citations

Posted Content
TL;DR: In this article, it was shown that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal $f \in {\cal F}$ decay like a power-law, then it is possible to reconstruct $f$ to within very high accuracy from a small number of random measurements.
Abstract: Suppose we are given a vector $f$ in $\R^N$. How many linear measurements do we need to make about $f$ to be able to recover $f$ to within precision $\epsilon$ in the Euclidean ($\ell_2$) metric? Or more exactly, suppose we are interested in a class ${\cal F}$ of such objects--discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy $\epsilon$? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal $f \in {\cal F}$ decay like a power-law (or if the coefficient sequence of $f$ in a fixed basis decays like a power-law), then it is possible to reconstruct $f$ to within very high accuracy from a small number of random measurements.

5,693 citations

Journal ArticleDOI
TL;DR: In this paper, an updated version of supplementary information to accompany "Quantum supremacy using a programmable superconducting processor", an article published in the October 24, 2019 issue of Nature, is presented.
Abstract: This is an updated version of supplementary information to accompany "Quantum supremacy using a programmable superconducting processor", an article published in the October 24, 2019 issue of Nature. The main article is freely available at this https URL. Summary of changes since arXiv:1910.11333v1 (submitted 23 Oct 2019): added URL for qFlex source code; added Erratum section; added Figure S41 comparing statistical and total uncertainty for log and linear XEB; new References [1,65]; miscellaneous updates for clarity and style consistency; miscellaneous typographical and formatting corrections.

4,873 citations