scispace - formally typeset
Search or ask a question
Author

Mario Trieloff

Bio: Mario Trieloff is an academic researcher from Heidelberg University. The author has contributed to research in topics: Cosmic dust & Chondrite. The author has an hindex of 33, co-authored 214 publications receiving 4539 citations. Previous affiliations of Mario Trieloff include Institut de Physique du Globe de Paris & Max Planck Society.


Papers
More filters
Journal ArticleDOI
TL;DR: Nomoto et al. as mentioned in this paper studied the evolution of the abundance in interstellar dust species that originate in stellar sources and from condensation in molecular clouds in the local interstellar medium of the Milky Way.
Abstract: Aims. We studied the evolution of the abundance in interstellar dust species that originate in stellar sources and from condensation in molecular clouds in the local interstellar medium of the Milky Way. We determined from this the input of dust material to the Solar System. Methods. A one-zone chemical evolution model of the Milky Way for the elemental composition of the disk combined with an evolution model for its interstellar dust component similar to that of Dwek (1998) is developed. The dust model considers dust-mass return from AGB stars as calculated from synthetic AGB models combined with models for dust condensation in stellar outflows. Supernova dust formation is included in a simple parametrised form that is gauged by observed abundances of presolar dust grains with a supernova origin. For dust growth in the ISM, a simple method is developed for coupling this with disk and dust evolution models. Results. A chemical evolution model of the solar neighbourhood in the Milky Way is calculated, which forms the basis for calculating a model of the evolution of the interstellar dust population at the galactocentric radius of the Milky Way. The model successfully passes all standard tests for the reliability of such models. In particular the abundance evolution of the important dust-forming elements is compared with observational results for the metallicity-dependent evolution of the abundances for G-type stars from the solar neighbourhood. It is found that the new tables of Nomoto et al. (2006) for the heavy element production give much better results for the abundance evolution of these important elements than the widely used tables of Woosley & Weaver (1995). The time evolution for the abundance of the following dust species is followed in the model: silicate, carbon, silicon carbide, and iron dust from AGB stars and from supernovae, as well as silicate, carbon, and iron dust grown in molecular clouds. It is shown that the interstellar dust population is dominated by dust accreted in molecular clouds; stardust only forms a minor fraction. Most of the dust material entering the Solar System at its formation does not show isotopic abundance anomalies of the refractory elements, i.e., inconspicuous isotopic abundances do not point to a Solar System origin for dust grains. The observed abundance ratios of presolar dust grains formed in supernova ejecta and in AGB star outflows requires that, for the ejecta from supernovae, the fraction of refractory elements condensed into dust is 0.15 for carbon dust and is quite small (∼10 −4 ) for other dust species.

341 citations

Journal ArticleDOI
03 Apr 2003-Nature
TL;DR: It is shown that, after fast accretion, an internal heating source resulted in a layered parent body that cooled relatively undisturbed: rocks in the outer shells reached lower maximum metamorphic temperatures and cooled faster than the more recrystallized and chemically equilibrated rocks from the centre, which needed ∼160 Myr to reach 390K.
Abstract: Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry

288 citations

Journal ArticleDOI
12 May 2000-Science
TL;DR: High-precision noble gas data show that the Hawaiian and Icelandic mantle plume sources contain uniquely primitive neon that is composed of moderately nucleogenic neon-21 and a primordial component indistinguishable from the meteoritic occurrence of solar neon.
Abstract: High-precision noble gas data show that the Hawaiian and Icelandic mantle plume sources contain uniquely primitive neon that is composed of moderately nucleogenic neon-21 and a primordial component indistinguishable from the meteoritic occurrence of solar neon. This suggests that Earth's solar-type rare gas inventory was acquired during accretion from small planetesimals previously irradiated by solar wind from the early sun. However, nonradiogenic argon, krypton, and xenon isotopes derived from the mantle display nonsolar compositions and indicate an atmosphere-like fingerprint that is not due to recent subduction.

272 citations

Journal ArticleDOI
01 Jun 2018-Nature
TL;DR: The detection of complex organic molecules with masses higher than 200 atomic mass units in ice grains emitted from Enceladus indicates the presence of a thin organic-rich layer on top of the moon’s subsurface ocean.
Abstract: Saturn’s moon Enceladus harbours a global water ocean1, which lies under an ice crust and above a rocky core2. Through warm cracks in the crust3 a cryo-volcanic plume ejects ice grains and vapour into space4–7 that contain materials originating from the ocean8,9. Hydrothermal activity is suspected to occur deep inside the porous core10–12, powered by tidal dissipation13. So far, only simple organic compounds with molecular masses mostly below 50 atomic mass units have been observed in plume material6,14,15. Here we report observations of emitted ice grains containing concentrated and complex macromolecular organic material with molecular masses above 200 atomic mass units. The data constrain the macromolecular structure of organics detected in the ice grains and suggest the presence of a thin organic-rich film on top of the oceanic water table, where organic nucleation cores generated by the bursting of bubbles allow the probing of Enceladus’ organic inventory in enhanced concentrations.

263 citations

Journal ArticleDOI
TL;DR: This paper reported the discovery of multiple 40Ar-39Ar isochrons in L chondrites, particularly the regolith breccia Ghubara, that allow the separation of radiogenic argon from multiple excess argon components.
Abstract: Radiochronometry of L chondritic meteorites yields a rough age estimate for a major collision in the asteroid belt about 500 Myr ago. Fossil meteorites from Sweden indicate a highly increased influx of extraterrestrial matter in the Middle Ordovician ~480 Myr ago. An association with the L-chondrite parent body event was suggested, but a definite link is precluded by the lack of more precise radiometric ages. Suggested ages range between 450 ± 30 Myr and 520 ± 60 Myr, and can neither convincingly prove a single breakup event, nor constrain the delivery times of meteorites from the asteroid belt to Earth. Here we report the discovery of multiple 40Ar-39Ar isochrons in shocked L chondrites, particularly the regolith breccia Ghubara, that allow the separation of radiogenic argon from multiple excess argon components. This approach, applied to several L chondrites, yields an improved age value that indicates a single asteroid breakup event at 470 ± 6 Myr, fully consistent with a refined age estimate of the Middle Ordovician meteorite shower at 467.3 ± 1.6 Myr (according to A Geologic Time Scale 2004). Our results link these fossil meteorites directly to the L-chondrite asteroid destruction, rapidly transferred from the asteroid belt. The increased terrestrial meteorite influx most likely involved larger projectiles that contributed to an increase in the terrestrial cratering rate, which implies severe environmental stress.

187 citations


Cited by
More filters
Journal ArticleDOI
05 Aug 2010-Nature
TL;DR: Foldit is described, a multiplayer online game that engages non-scientists in solving hard prediction problems and shows that top-ranked Foldit players excel at solving challenging structure refinement problems in which substantial backbone rearrangements are necessary to achieve the burial of hydrophobic residues.
Abstract: A natural polypeptide chain can fold into a native protein in microseconds, but predicting such stable three-dimensional structure from any given amino-acid sequence and first physical principles remains a formidable computational challenge. Aiming to recruit human visual and strategic powers to the task, Seth Cooper, David Baker and colleagues turned their 'Rosetta' structure-prediction algorithm into an online multiplayer game called Foldit, in which thousands of non-scientists competed and collaborated to produce a rich set of new algorithms and search strategies for protein structure refinement. The work shows that even computationally complex scientific problems can be effectively crowd-sourced using interactive multiplayer games. Predicting the structure of a folded protein from first principles for any given amino-acid sequence remains a formidable computational challenge. To recruit human abilities to the task, these authors turned their Rosetta structure prediction algorithm into an online multiplayer game in which thousands of non-scientists competed and collaborated to produce new algorithms and search strategies for protein structure refinement. This shows that computationally complex problems can be effectively 'crowd-sourced' through interactive multiplayer games. People exert large amounts of problem-solving effort playing computer games. Simple image- and text-recognition tasks have been successfully ‘crowd-sourced’ through games1,2,3, but it is not clear if more complex scientific problems can be solved with human-directed computing. Protein structure prediction is one such problem: locating the biologically relevant native conformation of a protein is a formidable computational challenge given the very large size of the search space. Here we describe Foldit, a multiplayer online game that engages non-scientists in solving hard prediction problems. Foldit players interact with protein structures using direct manipulation tools and user-friendly versions of algorithms from the Rosetta structure prediction methodology4, while they compete and collaborate to optimize the computed energy. We show that top-ranked Foldit players excel at solving challenging structure refinement problems in which substantial backbone rearrangements are necessary to achieve the burial of hydrophobic residues. Players working collaboratively develop a rich assortment of new strategies and algorithms; unlike computational approaches, they explore not only the conformational space but also the space of possible search strategies. The integration of human visual problem-solving and strategy development capabilities with traditional computational algorithms through interactive multiplayer games is a powerful new approach to solving computationally-limited scientific problems.

1,265 citations

Journal ArticleDOI
Bernard Marty1
TL;DR: For example, Pujol et al. as mentioned in this paper proposed that the Earth is not as volatile-poor as previously thought, and showed that it contains up to 2 (± 1) % contribution of carbonaceous chondrite (CI-CM) to a dry proto-Earth.

805 citations

Journal ArticleDOI
22 Feb 2001-Nature
TL;DR: It is possible that early life diversified near hydrothermal vents, but hypotheses that life first occupied other pre-bottleneck habitats are tenable (including transfer from Mars on ejecta from impacts there).
Abstract: Earth is over 4,500 million years old. Massive bombardment of the planet took place for the first 500–700 million years, and the largest impacts would have been capable of sterilizing the planet. Probably until 4,000 million years ago or later, occasional impacts might have heated the ocean over 100 °C. Life on Earth dates from before about 3,800 million years ago, and is likely to have gone through one or more hot-ocean 'bottlenecks'. Only hyperthermophiles (organisms optimally living in water at 80–110 °C) would have survived. It is possible that early life diversified near hydrothermal vents, but hypotheses that life first occupied other pre-bottleneck habitats are tenable (including transfer from Mars on ejecta from impacts there). Early hyperthermophile life, probably near hydrothermal systems, may have been non-photosynthetic, and many housekeeping proteins and biochemical processes may have an original hydrothermal heritage. The development of anoxygenic and then oxygenic photosynthesis would have allowed life to escape the hydrothermal setting. By about 3,500 million years ago, most of the principal biochemical pathways that sustain the modern biosphere had evolved, and were global in scope.

793 citations

Journal ArticleDOI
TL;DR: In the terrestrial environment, the abundances of noble gases are quite low because they were excluded from solid materials during planetary formation in the inner solar system, which makes the noble gases excellent tracers of mantle reservoirs as mentioned in this paper.
Abstract: The study of noble gases in oceanic basalts is central to understanding chemical heterogeneity of the Earth’s mantle and origin of the atmosphere. In the terrestrial environment the abundances of noble gases are quite low because they were excluded from solid materials during planetary formation in the inner solar system. This low background inventory helps to make the noble gases excellent tracers of mantle reservoirs. In this context, mid-ocean ridge and ocean island basalts provide valuable windows into the Earth’s mantle. These oceanic basalts are not prone to the degree of contamination often observed in continental lavas that results from their passage through thick continental lithosphere and crust. Mid-ocean ridge basalts (MORBs) form by partial melting as the ascending mantle beneath spreading ridges reaches its solidus temperature, and MORBs are generally accepted to represent a broad sampling of the convecting upper mantle. Ocean island basalts (OIBs) represent melting ‘anomalies’ that are generally related to mantle upwelling. The extent to which ocean islands are derived from a thermal boundary layer in the deep mantle (e.g., as a mantle plume) or from chemical heterogeneities embedded within the mantle convective flow (e.g., as a mantle ‘blob’) has been debated for decades, and is not currently resolved. The isotope compositions of noble gases in oceanic basalts bear significantly on such debates over the chemical structure of the mantle. When oceanic basalts erupt as submarine lavas, their quenched rims of glass may contain high volatile abundances (especially when they are deeply erupted under elevated hydrostatic pressure), providing the best available opportunity for precisely characterizing the noble gas composition of the Earth’s mantle. In favorable cases, inclusions of melt or fluids trapped within magmatic phenocrysts and mantle xenoliths can also be precisely analyzed for noble gas composition. Measurable changes in the isotope compositions of noble gases …

677 citations