scispace - formally typeset
Search or ask a question
Author

Marion Koopmans

Bio: Marion Koopmans is an academic researcher from Erasmus University Rotterdam. The author has contributed to research in topics: Medicine & Norovirus. The author has an hindex of 110, co-authored 686 publications receiving 49681 citations. Previous affiliations of Marion Koopmans include World Health Organization & Boston Children's Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: A validated diagnostic workflow for 2019-nCoV is presented, its design relying on close genetic relatedness of 2019- nCoV with SARS coronavirus, making use of synthetic nucleic acid technology.
Abstract: Background The ongoing outbreak of the recently emerged novel coronavirus (2019-nCoV) poses a challenge for public health laboratories as virus isolates are unavailable while there is growing evidence that the outbreak is more widespread than initially thought, and international spread through travellers does already occur. Aim We aimed to develop and deploy robust diagnostic methodology for use in public health laboratory settings without having virus material available. Methods Here we present a validated diagnostic workflow for 2019-nCoV, its design relying on close genetic relatedness of 2019-nCoV with SARS coronavirus, making use of synthetic nucleic acid technology. Results The workflow reliably detects 2019-nCoV, and further discriminates 2019-nCoV from SARS-CoV. Through coordination between academic and public laboratories, we confirmed assay exclusivity based on 297 original clinical specimens containing a full spectrum of human respiratory viruses. Control material is made available through European Virus Archive – Global (EVAg), a European Union infrastructure project. Conclusion The present study demonstrates the enormous response capacity achieved through coordination of academic and public laboratories in national and European research networks.

6,229 citations

Journal ArticleDOI
TL;DR: It is demonstrated that most PCR-confirmed SARS-CoV-2–infected persons seroconverted by 2 weeks after disease onset, and validated and tested various antigens in different in-house and commercial ELISAs, finding that commercial S1 IgG or IgA ELISA were of lower specificity, and sensitivity varied between the 2 assays; the IgAELISA showed higher sensitivity.
Abstract: A new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has recently emerged to cause a human pandemic Although molecular diagnostic tests were rapidly developed, serologic assays are still lacking, yet urgently needed Validated serologic assays are needed for contact tracing, identifying the viral reservoir, and epidemiologic studies We developed serologic assays for detection of SARS-CoV-2 neutralizing, spike protein-specific, and nucleocapsid-specific antibodies Using serum samples from patients with PCR-confirmed SARS-CoV-2 infections, other coronaviruses, or other respiratory pathogenic infections, we validated and tested various antigens in different in-house and commercial ELISAs We demonstrated that most PCR-confirmed SARS-CoV-2-infected persons seroconverted by 2 weeks after disease onset We found that commercial S1 IgG or IgA ELISAs were of lower specificity, and sensitivity varied between the 2 assays;the IgA ELISA showed higher sensitivity Overall, the validated assays described can be instrumental for detection of SARS-CoV-2-specific antibodies for diagnostic, seroepidemiologic, and vaccine evaluation studies

1,332 citations

Journal ArticleDOI
03 Jul 2020-Science
TL;DR: It is demonstrated that intestinal organoids can serve as a model to understand SARS-CoV-2 biology and infectivity in the gut, and hSIOs serve as an experimental model for coronavirus infection and biology.
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause coronavirus disease 2019 (COVID-19), an influenza-like disease that is primarily thought to infect the lungs with transmission through the respiratory route. However, clinical evidence suggests that the intestine may present another viral target organ. Indeed, the SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) is highly expressed on differentiated enterocytes. In human small intestinal organoids (hSIOs), enterocytes were readily infected by SARS-CoV and SARS-CoV-2, as demonstrated by confocal and electron microscopy. Enterocytes produced infectious viral particles, whereas messenger RNA expression analysis of hSIOs revealed induction of a generic viral response program. Therefore, the intestinal epithelium supports SARS-CoV-2 replication, and hSIOs serve as an experimental model for coronavirus infection and biology.

1,276 citations

Journal ArticleDOI
TL;DR: A Novel Coronavirus Emerging in China A novel coronavirus, designated as 2019-nCoV, emerged in Wuhan, China, at the end of 2019, although many details of the emergence of this virus remain unknown.
Abstract: A Novel Coronavirus Emerging in China A novel coronavirus, designated as 2019-nCoV, emerged in Wuhan, China, at the end of 2019. Although many details of the emergence of this virus remain unknown,...

1,138 citations

Journal ArticleDOI
TL;DR: Evidence is presented to indicate that the microbiological safety of food remains a dynamic situation heavily influenced by multiple factors along the food chain from farm to fork.

1,079 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Characteristics of patients who died were in line with the MuLBSTA score, an early warning model for predicting mortality in viral pneumonia, and further investigation is needed to explore the applicability of the Mu LBSTA scores in predicting the risk of mortality in 2019-nCoV infection.

16,282 citations

Journal ArticleDOI
16 Apr 2020-Cell
TL;DR: It is demonstrated that SARS-CoV-2 uses the SARS -CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming, and it is shown that the sera from convalescent SARS patients cross-neutralized Sars-2-S-driven entry.

15,362 citations

Journal ArticleDOI
TL;DR: There is evidence that human-to-human transmission has occurred among close contacts since the middle of December 2019 and considerable efforts to reduce transmission will be required to control outbreaks if similar dynamics apply elsewhere.
Abstract: Background The initial cases of novel coronavirus (2019-nCoV)–infected pneumonia (NCIP) occurred in Wuhan, Hubei Province, China, in December 2019 and January 2020. We analyzed data on the...

13,101 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations