scispace - formally typeset
Search or ask a question
Author

Marion M. Bradford

Bio: Marion M. Bradford is an academic researcher from University of Georgia. The author has contributed to research in topics: Bradford protein assay & Thermolysin. The author has an hindex of 6, co-authored 7 publications receiving 214578 citations.

Papers
More filters
Journal ArticleDOI

[...]

TL;DR: This assay is very reproducible and rapid with the dye binding process virtually complete in approximately 2 min with good color stability for 1 hr with little or no interference from cations such as sodium or potassium nor from carbohydrates such as sucrose.
Abstract: A protein determination method which involves the binding of Coomassie Brilliant Blue G-250 to protein is described. The binding of the dye to protein causes a shift in the absorption maximum of the dye from 465 to 595 nm, and it is the increase in absorption at 595 nm which is monitored. This assay is very reproducible and rapid with the dye binding process virtually complete in approximately 2 min with good color stability for 1 hr. There is little or no interference from cations such as sodium or potassium nor from carbohydrates such as sucrose. A small amount of color is developed in the presence of strongly alkaline buffering agents, but the assay may be run accurately by the use of proper buffer controls. The only components found to give excessive interfering color in the assay are relatively large amounts of detergents such as sodium dodecyl sulfate, Triton X-100, and commercial glassware detergents. Interference by small amounts of detergent may be eliminated by the use of proper controls.

214,383 citations

Journal ArticleDOI

[...]

TL;DR: Sperm from hamster, human, rooster, rabbit and sea urchin were found to contain relatively high levels of calcium-dependent modulator protein, which is similar to porcine and brain modulator proteins in its ability to activate brain cyclic nucleotide phosphodiesterase, its heat stability and electrophoretic migration.
Abstract: Sperm from hamster, human, rooster, rabbit and sea urchin were found to contain relatively high levels of calcium-dependent modulator protein. Using rabbit sperm the modulator protein was found to be exclusively located in the sperm head fraction (nuclei + acrosomes) with no activity present in the midpiece or tail regions. The modulator protein represents approximately 12% of the total soluble protein found in the sperm head fraction and is similar to porcine and brain modulator proteins in its ability to activate brain cyclic nucleotide phosphodiesterase, its heat stability and electrophoretic migration. We have also observed modulator protein to be present in high levels in sea urchin eggs.

86 citations

Journal ArticleDOI

[...]

TL;DR: A proteinase, acrolysin, has been shown to be an initiator of proacrosin activation in mammalian fertilization as mentioned in this paper, which is the only known proteinase that catalyzes the conversion of proACrosin to acrosin (E.C. 3.4.21.4).
Abstract: Extracts of mammalian sperm acrosomes and testes contain a proteinase, acrolysin, that hydrolyzes the aminopeptide bonds of hydrophobic aminoacyl residues. Acrolysin has hydrolytic specificity and properties similar to the proteinase, thermolysin (E.C. 3.4.24.4), that also catalyzes the conversion of proacrosin to acrosin (E.C. 3.4.21.10). Acrolysin is the apparent initiator of proacrosin activation in mammalian fertilization.

49 citations

Patent

[...]

10 Jun 1976
TL;DR: A dye binding reagent for protein assay comprises Coomassie Brilliant Blue G-250 and an acid having a pKa of from 1 to 2 as discussed by the authors, which can be spectrophotometrically measured to quantitate even micrograms of protein.
Abstract: A dye binding reagent for protein assay comprises Coomassie Brilliant Blue G-250 and an acid having a pKa of from 1 to 2. Upon addition of the reagent to a protein-containing solution, the attendant color change can be spectrophotometrically measured to quantitate even micrograms of protein. Furthermore, the reagent is applicable to a wide range of proteins and requires only about 2 minutes for measurement. Addition of an alcohol such as ethanol to the reagent further improves sensitivity.

23 citations

Journal ArticleDOI

[...]

22 citations


Cited by
More filters
Journal ArticleDOI

[...]

TL;DR: GUS is very stable, and tissue extracts continue to show high levels of GUS activity after prolonged storage, and Histochemical analysis has been used to demonstrate the localization of gene activity in cells and tissues of transformed plants.
Abstract: We have used the Escherichia coli beta-glucuronidase gene (GUS) as a gene fusion marker for analysis of gene expression in transformed plants. Higher plants tested lack intrinsic beta-glucuronidase activity, thus enhancing the sensitivity with which measurements can be made. We have constructed gene fusions using the cauliflower mosaic virus (CaMV) 35S promoter or the promoter from a gene encoding the small subunit of ribulose bisphosphate carboxylase (rbcS) to direct the expression of beta-glucuronidase in transformed plants. Expression of GUS can be measured accurately using fluorometric assays of very small amounts of transformed plant tissue. Plants expressing GUS are normal, healthy and fertile. GUS is very stable, and tissue extracts continue to show high levels of GUS activity after prolonged storage. Histochemical analysis has been used to demonstrate the localization of gene activity in cells and tissues of transformed plants.

9,309 citations

Journal ArticleDOI

[...]

TL;DR: The SRB assay provides a sensitive measure of drug-induced cytotoxicity, is useful in quantitating clonogenicity, and is well suited to high-volume, automated drug screening.
Abstract: We have developed a rapid, sensitive, and inexpensive method for measuring the cellular protein content of adherent and suspension cultures in 96-well microtiter plates. The method is suitable for ordinary laboratory purposes and for very large-scale applications, such as the National Cancer Institute's disease-oriented in vitro anticancer-drug discovery screen, which requires the use of several million culture wells per year. Cultures fixed with trichloroacetic acid were stained for 30 minutes with 0.4% (wt/vol) sulforhodamine B (SRB) dissolved in 1% acetic acid. Unbound dye was removed by four washes with 1% acetic acid, and protein-bound dye was extracted with 10 mM unbuffered Tris base [tris (hydroxymethyl)aminomethane] for determination of optical density in a computer-interfaced, 96-well microtiter plate reader. The SRB assay results were linear with the number of cells and with values for cellular protein measured by both the Lowry and Bradford assays at densities ranging from sparse subconfluence to multilayered supraconfluence. The signal-to-noise ratio at 564 nm was approximately 1.5 with 1,000 cells per well. The sensitivity of the SRB assay compared favorably with sensitivities of several fluorescence assays and was superior to those of both the Lowry and Bradford assays and to those of 20 other visible dyes. The SRB assay provides a colorimetric end point that is nondestructive, indefinitely stable, and visible to the naked eye. It provides a sensitive measure of drug-induced cytotoxicity, is useful in quantitating clonogenicity, and is well suited to high-volume, automated drug screening. SRB fluoresces strongly with laser excitation at 488 nm and can be measured quantitatively at the single-cell level by static fluorescence cytometry.

8,492 citations

Journal ArticleDOI

[...]

TL;DR: Control elements of the tetracycline-resistance operon encoded in Tn10 of Escherichia coli have been utilized to establish a highly efficient regulatory system in mammalian cells that is suitable for creation of "on/off" situations for such genes in a reversible way.
Abstract: Control elements of the tetracycline-resistance operon encoded in Tn10 of Escherichia coli have been utilized to establish a highly efficient regulatory system in mammalian cells. By fusing the tet repressor with the activating domain of virion protein 16 of herpes simplex virus, a tetracycline-controlled transactivator (tTA) was generated that is constitutively expressed in HeLa cells. This transactivator stimulates transcription from a minimal promoter sequence derived from the human cytomegalovirus promoter IE combined with tet operator sequences. Upon integration of a luciferase gene controlled by a tTA-dependent promoter into a tTA-producing HeLa cell line, high levels of luciferase expression were monitored. These activities are sensitive to tetracycline. Depending on the concentration of the antibiotic in the culture medium (0-1 microgram/ml), the luciferase activity can be regulated over up to five orders of magnitude. Thus, the system not only allows differential control of the activity of an individual gene in mammalian cells but also is suitable for creation of "on/off" situations for such genes in a reversible way.

5,189 citations

Journal ArticleDOI

[...]

TL;DR: In this article, a method for calculating accurate molar extinction coefficients for proteins at 280 nm, simply from knowledge of the amino acid composition, was presented, and the method was calibrated against 18 "normal" globular proteins.
Abstract: Quantitative study of protein-protein and protein-ligand interactions in solution requires accurate determination of protein concentration. Often, for proteins available only in "molecular biological" amounts, it is difficult or impossible to make an accurate experimental measurement of the molar extinction coefficient of the protein. Yet without a reliable value of this parameter, one cannot determine protein concentrations by the usual uv spectroscopic means. Fortunately, knowledge of amino acid residue sequence and promoter molecular weight (and thus also of amino acid composition) is generally available through the DNA sequence, which is usually accurately known for most such proteins. In this paper we present a method for calculating accurate (to +/- 5% in most cases) molar extinction coefficients for proteins at 280 nm, simply from knowledge of the amino acid composition. The method is calibrated against 18 "normal" globular proteins whose molar extinction coefficients are accurately known, and the assumptions underlying the method, as well as its limitations, are discussed.

4,933 citations

Journal ArticleDOI

[...]

TL;DR: It is shown that micromolar concentrations of H2O2 can induce the expression and replication of HIV‐1 in a human T cell line and suggests that diverse agents thought to activate NF‐kappa B by distinct intracellular pathways might all act through a common mechanism involving the synthesis of ROI.
Abstract: Hydrogen peroxide and oxygen radicals are agents commonly produced during inflammatory processes. In this study, we show that micromolar concentrations of H2O2 can induce the expression and replication of HIV-1 in a human T cell line. The effect is mediated by the NF-kappa B transcription factor which is potently and rapidly activated by an H2O2 treatment of cells from its inactive cytoplasmic form. N-acetyl-L-cysteine (NAC), a well characterized antioxidant which counteracts the effects of reactive oxygen intermediates (ROI) in living cells, prevented the activation of NF-kappa B by H2O2. NAC and other thiol compounds also blocked the activation of NF-kappa B by cycloheximide, double-stranded RNA, calcium ionophore, TNF-alpha, active phorbol ester, interleukin-1, lipopolysaccharide and lectin. This suggests that diverse agents thought to activate NF-kappa B by distinct intracellular pathways might all act through a common mechanism involving the synthesis of ROI. ROI appear to serve as messengers mediating directly or indirectly the release of the inhibitory subunit I kappa B from NF-kappa B.

3,719 citations