scispace - formally typeset
Search or ask a question
Author

Marjolein Heddes

Bio: Marjolein Heddes is an academic researcher from Technische Universität München. The author has contributed to research in topics: Circadian rhythm & Biology. The author has co-authored 1 publications.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article , the authors demonstrate that fecal microbial oscillations are maintained in mice kept in the absence of light, supporting a role of the host's circadian system rather than representing a diurnal response to environmental changes.
Abstract: Diurnal (i.e., 24-hour) oscillations of the gut microbiome have been described in various species including mice and humans. However, the driving force behind these rhythms remains less clear. In this study, we differentiate between endogenous and exogenous time cues driving microbial rhythms. Our results demonstrate that fecal microbial oscillations are maintained in mice kept in the absence of light, supporting a role of the host's circadian system rather than representing a diurnal response to environmental changes. Intestinal epithelial cell-specific ablation of the core clock gene Bmal1 disrupts rhythmicity of microbiota. Targeted metabolomics functionally link intestinal clock-controlled bacteria to microbial-derived products, in particular branched-chain fatty acids and secondary bile acids. Microbiota transfer from intestinal clock-deficient mice into germ-free mice altered intestinal gene expression, enhanced lymphoid organ weights and suppressed immune cell recruitment. These results highlight the importance of functional intestinal clocks for microbiota composition and function, which is required to balance the host's gastrointestinal homeostasis.

23 citations

Journal ArticleDOI
TL;DR: In this paper , the authors investigated the relationship between circadian disruption and microbiota dysbiosis in metabolic diseases, and found that loss of rhythmicity in bacteria taxa and their products, likely originates in desynchronization of intestinal clocks, promotes metabolic abnormalities during shift work.
Abstract: Internal clocks time behavior and physiology, including the gut microbiome, in a circadian (∼24 h) manner. Mismatch between internal and external time, e.g. during shift work, disrupts circadian system coordination promoting the development of obesity and type 2 diabetes (T2D). Conversely, body weight changes induce microbiota dysbiosis. The relationship between circadian disruption and microbiota dysbiosis in metabolic diseases, however, remains largely unknown.Core and accessory clock gene expression in different gastrointestinal (GI) tissues were determined by qPCR in two different models of circadian disruption - mice with Bmal1 deficiency in the circadian pacemaker, the suprachiasmatic nucleus (Bmal1SCNfl/-), and wild-type mice exposed to simulated shift work (SSW). Body composition and energy balance were evaluated by nuclear magnetic resonance (NMR), bomb calorimetry, food intake and running-wheel activity. Intestinal permeability was measured in an Ussing chamber. Microbiota composition and functionality were evaluated by 16S rRNA gene amplicon sequencing, PICRUST2.0 analysis and targeted metabolomics. Finally, microbiota transfer was conducted to evaluate the functional impact of SSW-associated microbiota on the host's physiology.Both chronodisruption models show desynchronization within and between peripheral clocks in GI tissues and reduced microbial rhythmicity, in particular in taxa involved in short-chain fatty acid (SCFA) fermentation and lipid metabolism. In Bmal1SCNfl/- mice, loss of rhythmicity in microbial functioning associates with previously shown increased body weight, dysfunctional glucose homeostasis and adiposity. Similarly, we observe an increase in body weight in SSW mice. Germ-free colonization experiments with SSW-associated microbiota mechanistically link body weight gain to microbial changes. Moreover, alterations in expression of peripheral clock genes as well as clock-controlled genes (CCGs) relevant for metabolic functioning of the host were observed in recipients, indicating a bidirectional relationship between microbiota rhythmicity and peripheral clock regulation.Collectively, our data suggest that loss of rhythmicity in bacteria taxa and their products, which likely originates in desynchronization of intestinal clocks, promotes metabolic abnormalities during shift work.

4 citations

Posted ContentDOI
28 Jul 2022-bioRxiv
TL;DR: The data suggest that loss of rhythmicity in bacteria taxa and their products, which likely originates in desynchronization of intestinal clocks, promotes metabolic abnormalities during shift work.
Abstract: Objective Internal clocks time behavior and physiology, including the gut microbiome in a circadian (∼24 h) manner. Mismatch between internal and external time, e.g. during shift work, disrupts circadian system coordination promoting the development of obesity and type 2 diabetes (T2D). Conversely, body weight changes induce microbiota dysbiosis. The relationship between circadian disruption and microbiota dysbiosis in metabolic diseases, however, remains largely unknown. Methods Core and accessory clock gene expression in different gastrointestinal (GI) tissues were determined by qPCR in two different models of circadian disruption - mice with Bmal1 deficiency in the circadian pacemaker, the suprachiasmatic nucleus (Bmal1SCNfl/-), and wild-type mice exposed to simulated shift work (SSW). Body composition and energy balance were evaluated by nuclear magnetic resonance (NMR), bomb calorimetry, food intake and running-wheel activity. Intestinal permeability was measured in an Ussing chamber. Microbiota composition and functionality were evaluated by 16S rRNA gene amplicon sequencing, PICRUST2.0 analysis and targeted metabolomics. Finally, microbiota transfer was conducted to evaluate the functional impact of SSW-associated microbiota on the host’s physiology. Results Both chronodisruption models show desynchronization within and between peripheral clocks in GI tissues and reduced microbial rhythmicity, in particular in taxa involved in short-chain fatty acid (SCFA) fermentation and lipid metabolism. In Bmal1SCNfl/- mice, loss of rhythmicity in microbial functioning associates with previously shown increased body weight, dysfunctional glucose homeostasis and adiposity. Similarly, we observe an increase in body weight in SSW mice. Germ-free colonization experiments with SSW- associated microbiota mechanistically link body weight gain to microbial changes. Moreover, alterations in expression of peripheral clock genes as well as clock-controlled genes (CCGs) relevant for metabolic functioning of the host were observed in recipients, indicating a bidirectional relationship between microbiota rhythmicity and peripheral clock regulation. Conclusions Collectively, our data suggest that loss of rhythmicity in bacteria taxa and their products, which likely originates in desynchronization of intestinal clocks, promotes metabolic abnormalities during shift work.

2 citations

Posted ContentDOI
18 Oct 2021-bioRxiv
TL;DR: In this article, the authors demonstrate that fecal microbial oscillations are maintained in mice kept in the absence of light, supporting a role of the hosts circadian system rather than representing a diurnal response to environmental changes.
Abstract: Diurnal (i.e., 24-hour) oscillations of the gut microbiome have been described in various species including mice and humans. However, the driving force behind these rhythms remains less clear. In this study, we differentiate between endogenous and exogenous time cues driving microbial rhythms. Our results demonstrate that fecal microbial oscillations are maintained in mice kept in the absence of light, supporting a role of the hosts circadian system rather than representing a diurnal response to environmental changes. Intestinal epithelial cell-specific ablation of the core clock gene Bmal1 disrupts rhythmicity of microbiota. Targeted metabolomics functionally link intestinal clock-controlled bacteria to microbial-derived products, in particular branched-chain fatty acids and secondary bile acids. Microbiota transfer from intestinal clock-deficient mice into germ-free mice altered intestinal gene expression, enhanced lymphoid organ weights and suppressed immune cell recruitment. These results highlight the importance of functional intestinal clocks for circadian microbiota composition and function, which is required to balance the hosts gastrointestinal homeostasis.

1 citations

Posted ContentDOI
25 Jan 2023-bioRxiv
TL;DR: In this paper , the effect of the intestinal clock on the development and progression of colitis was investigated in mice lacking the clock and IBD-relevant mouse model under different feeding conditions to describe the functional impact of the clock in the development of gastrointestinal inflammation.
Abstract: Objective Impaired clock genes expression has been observed in biopsy samples from patients with inflammatory bowel disease (IBD). Disruption of circadian rhythms, which occurs in shift workers, has been linked to an increased risk of gastrointestinal diseases, including IBD. The intestinal clock balances gastrointestinal homeostasis by regulating the microbiome. Here we characterize intestinal immune functions in mice lacking the intestinal clock and IBD-relevant mouse model under different feeding conditions to describe the functional impact of the intestinal clock in the development of gastrointestinal inflammation. Design Tissues and fecal samples from intestinal clock-deficient mice (Bmal1IEC-/-) and mouse models for colitis (IL-10-/-, Bmal1IEC-/-xIL-10-/-, dextran sulfate sodium (DSS) administration) under ad libitum and restricted feeding (RF) conditions were used to determine the causal role of the intestinal clock for colitis. Results In IL-10-/- mice, inflammation correlated with disrupted colon clock genes expression. Genetic loss of intestinal clock functions promoted DSS and IBD inflammatory phenotypes and dramatically reduces survival, and colonization with disease-associated microbiota in germ- free Bmal1IEC-/- hosts increased their inflammatory responses, demonstrating the causal role of colonic clock disruption and the severity of IBD. RF in IL-10-/- mice restored the colon clock and related immune functions, improved the inflammatory responses and rescued the histopathological phenotype. In contrast, RF failed to improve IBD symptoms in Bmal1IEC-/- xIL-10-/- demonstrating the significance of the colonic clock to gate the effect of RF. Conclusion We provide evidence that inflammation-associated intestinal clock dysfunction triggers host immune imbalance and promotes the development and progression of IBD-like colitis. Enhancing intestinal clock function by RF modulates the pathogenesis of IBD and thus could become a novel strategy to ameliorate the symptoms in IBD patients.

Cited by
More filters
Journal ArticleDOI
TL;DR: In this article , a review of the most recent research advancements in the Gut microbiota-immune axis is presented, where the authors describe how the gut microbiota shapes both innate and adaptive immunity with emphasis on the metabolites short-chain fatty acids and secondary bile acids.
Abstract: Gut microbes and their metabolites are actively involved in the development and regulation of host immunity, which can influence disease susceptibility. Herein, we review the most recent research advancements in the gut microbiota–immune axis. We discuss in detail how the gut microbiota is a tipping point for neonatal immune development as indicated by newly uncovered phenomenon, such as maternal imprinting, in utero intestinal metabolome, and weaning reaction. We describe how the gut microbiota shapes both innate and adaptive immunity with emphasis on the metabolites short-chain fatty acids and secondary bile acids. We also comprehensively delineate how disruption in the microbiota–immune axis results in immune-mediated diseases, such as gastrointestinal infections, inflammatory bowel diseases, cardiometabolic disorders (e.g., cardiovascular diseases, diabetes, and hypertension), autoimmunity (e.g., rheumatoid arthritis), hypersensitivity (e.g., asthma and allergies), psychological disorders (e.g., anxiety), and cancer (e.g., colorectal and hepatic). We further encompass the role of fecal microbiota transplantation, probiotics, prebiotics, and dietary polyphenols in reshaping the gut microbiota and their therapeutic potential. Continuing, we examine how the gut microbiota modulates immune therapies, including immune checkpoint inhibitors, JAK inhibitors, and anti-TNF therapies. We lastly mention the current challenges in metagenomics, germ-free models, and microbiota recapitulation to a achieve fundamental understanding for how gut microbiota regulates immunity. Altogether, this review proposes improving immunotherapy efficacy from the perspective of microbiome-targeted interventions.

12 citations

Journal ArticleDOI
TL;DR: Melatonin has been shown to have positive effects in various pathologies, as a modulator of important biochemical pathways including inflammation, oxidative stress, cell injury, apoptosis, and energy metabolism as discussed by the authors .
Abstract: Melatonin is a pineal indolamine, allegedly known as a circadian rhythm regulator, and an antioxidative and immunomodulatory molecule. In both experimental and clinical trials, melatonin has been shown to have positive effects in various pathologies, as a modulator of important biochemical pathways including inflammation, oxidative stress, cell injury, apoptosis, and energy metabolism. The gut represents one of melatonin’s most abundant extra pineal sources, with a 400-times-higher concentration than the pineal gland. The importance of the gut microbial community—namely, the gut microbiota, in multiple critical functions of the organism— has been extensively studied throughout time, and its imbalance has been associated with a variety of human pathologies. Recent studies highlight a possible gut microbiota-modulating role of melatonin, with possible implications for the treatment of these pathologies. Consequently, melatonin might prove to be a valuable and versatile therapeutic agent, as it is well known to elicit positive functions on the microbiota in many dysbiosis-associated conditions, such as inflammatory bowel disease, chronodisruption-induced dysbiosis, obesity, and neuropsychiatric disorders. This review intends to lay the basis for a deeper comprehension of melatonin, gut microbiota, and host-health subtle interactions.

6 citations

Journal ArticleDOI
TL;DR: In this paper , the authors investigated the relationship between circadian disruption and microbiota dysbiosis in metabolic diseases, and found that loss of rhythmicity in bacteria taxa and their products, likely originates in desynchronization of intestinal clocks, promotes metabolic abnormalities during shift work.
Abstract: Internal clocks time behavior and physiology, including the gut microbiome, in a circadian (∼24 h) manner. Mismatch between internal and external time, e.g. during shift work, disrupts circadian system coordination promoting the development of obesity and type 2 diabetes (T2D). Conversely, body weight changes induce microbiota dysbiosis. The relationship between circadian disruption and microbiota dysbiosis in metabolic diseases, however, remains largely unknown.Core and accessory clock gene expression in different gastrointestinal (GI) tissues were determined by qPCR in two different models of circadian disruption - mice with Bmal1 deficiency in the circadian pacemaker, the suprachiasmatic nucleus (Bmal1SCNfl/-), and wild-type mice exposed to simulated shift work (SSW). Body composition and energy balance were evaluated by nuclear magnetic resonance (NMR), bomb calorimetry, food intake and running-wheel activity. Intestinal permeability was measured in an Ussing chamber. Microbiota composition and functionality were evaluated by 16S rRNA gene amplicon sequencing, PICRUST2.0 analysis and targeted metabolomics. Finally, microbiota transfer was conducted to evaluate the functional impact of SSW-associated microbiota on the host's physiology.Both chronodisruption models show desynchronization within and between peripheral clocks in GI tissues and reduced microbial rhythmicity, in particular in taxa involved in short-chain fatty acid (SCFA) fermentation and lipid metabolism. In Bmal1SCNfl/- mice, loss of rhythmicity in microbial functioning associates with previously shown increased body weight, dysfunctional glucose homeostasis and adiposity. Similarly, we observe an increase in body weight in SSW mice. Germ-free colonization experiments with SSW-associated microbiota mechanistically link body weight gain to microbial changes. Moreover, alterations in expression of peripheral clock genes as well as clock-controlled genes (CCGs) relevant for metabolic functioning of the host were observed in recipients, indicating a bidirectional relationship between microbiota rhythmicity and peripheral clock regulation.Collectively, our data suggest that loss of rhythmicity in bacteria taxa and their products, which likely originates in desynchronization of intestinal clocks, promotes metabolic abnormalities during shift work.

4 citations

Posted ContentDOI
28 Oct 2022-bioRxiv
TL;DR: In this paper , the authors show that sample collection time affects the conclusions drawn from microbiome studies and are larger than the effect size of a daily experimental intervention or dietary changes, and that the timing of divergence of the microbiome composition between experimental and control groups are unique to each experiment.
Abstract: Although many aspects of microbiome studies have been standardized to improve experimental replicability, none account for how the daily diurnal fluctuations in the gut lumen cause dynamic changes in 16S amplicon sequencing. Here we show that sample collection time affects the conclusions drawn from microbiome studies and are larger than the effect size of a daily experimental intervention or dietary changes. The timing of divergence of the microbiome composition between experimental and control groups are unique to each experiment. Sample collection times as short as only four hours apart lead to vastly different conclusions. Lack of consistency in the time of sample collection may explain poor cross-study replicability in microbiome research. Without looking at other data, the impact on other fields is unknown but potentially significant. One-Sentence Summary If we are not controlling for host circadian rhythm time in microbiome studies when performing experiments, it is like trying to measure sea level rise while not knowing that tides or waves exist.

2 citations

Posted ContentDOI
28 Jul 2022-bioRxiv
TL;DR: The data suggest that loss of rhythmicity in bacteria taxa and their products, which likely originates in desynchronization of intestinal clocks, promotes metabolic abnormalities during shift work.
Abstract: Objective Internal clocks time behavior and physiology, including the gut microbiome in a circadian (∼24 h) manner. Mismatch between internal and external time, e.g. during shift work, disrupts circadian system coordination promoting the development of obesity and type 2 diabetes (T2D). Conversely, body weight changes induce microbiota dysbiosis. The relationship between circadian disruption and microbiota dysbiosis in metabolic diseases, however, remains largely unknown. Methods Core and accessory clock gene expression in different gastrointestinal (GI) tissues were determined by qPCR in two different models of circadian disruption - mice with Bmal1 deficiency in the circadian pacemaker, the suprachiasmatic nucleus (Bmal1SCNfl/-), and wild-type mice exposed to simulated shift work (SSW). Body composition and energy balance were evaluated by nuclear magnetic resonance (NMR), bomb calorimetry, food intake and running-wheel activity. Intestinal permeability was measured in an Ussing chamber. Microbiota composition and functionality were evaluated by 16S rRNA gene amplicon sequencing, PICRUST2.0 analysis and targeted metabolomics. Finally, microbiota transfer was conducted to evaluate the functional impact of SSW-associated microbiota on the host’s physiology. Results Both chronodisruption models show desynchronization within and between peripheral clocks in GI tissues and reduced microbial rhythmicity, in particular in taxa involved in short-chain fatty acid (SCFA) fermentation and lipid metabolism. In Bmal1SCNfl/- mice, loss of rhythmicity in microbial functioning associates with previously shown increased body weight, dysfunctional glucose homeostasis and adiposity. Similarly, we observe an increase in body weight in SSW mice. Germ-free colonization experiments with SSW- associated microbiota mechanistically link body weight gain to microbial changes. Moreover, alterations in expression of peripheral clock genes as well as clock-controlled genes (CCGs) relevant for metabolic functioning of the host were observed in recipients, indicating a bidirectional relationship between microbiota rhythmicity and peripheral clock regulation. Conclusions Collectively, our data suggest that loss of rhythmicity in bacteria taxa and their products, which likely originates in desynchronization of intestinal clocks, promotes metabolic abnormalities during shift work.

2 citations