scispace - formally typeset
Search or ask a question
Author

Mark A. Grosenbaugh

Bio: Mark A. Grosenbaugh is an academic researcher from Woods Hole Oceanographic Institution. The author has contributed to research in topics: Mooring & Drag. The author has an hindex of 20, co-authored 53 publications receiving 2723 citations. Previous affiliations of Mark A. Grosenbaugh include Massachusetts Institute of Technology & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, it was shown that a stable coexistence of the jet profile and the large-scale patterns is ensured only at the frequency of maximum amplification, hence at this frequency optimal efficiency is obtained, i.e., maximum thrust per unit input energy.

808 citations

Journal ArticleDOI
TL;DR: In this article, the authors present experimental force and power measurements demonstrating that the power required to propel an actively swimming, streamlined, fish-like body is significantly smaller than the power needed to tow the body straight and rigid at the same speed U.
Abstract: We present experimental force and power measurements demonstrating that the power required to propel an actively swimming, streamlined, fish-like body is significantly smaller than the power needed to tow the body straight and rigid at the same speed U. The data have been obtained through accurate force and motion measurements on a laboratory fish-like robotic mechanism, 1.2 m long, covered with a flexible skin and equipped with a tail fin, at Reynolds numbers up to 106, with turbulence stimulation. The lateral motion of the body is in the form of a travelling wave with wavelength λ and varying amplitude along the length, smoothly increasing from the front to the tail end. A parametric investigation shows sensitivity of drag reduction to the non-dimensional frequency (Strouhal number), amplitude of body oscillation and wavelength λ, and angle of attack and phase angle of the tail fin. A necessary condition for drag reduction is that the phase speed of the body wave be greater than the forward speed U. Power estimates using an inviscid numerical scheme compare favourably with the experimental data. The method employs a boundary-integral method for arbitrary flexible body geometry and motions, while the wake shed from the fish-like form is modelled by an evolving desingularized dipole sheet.

483 citations

Journal ArticleDOI
TL;DR: The fish benefits from smooth near-body flow patterns and the generation of controlled body-bound vorticity, which is propagated towards the tail, shed prior to the peduncle region and then manipulated by the caudal fin to form large-scale vortical structures with minimum wasted energy.
Abstract: We consider the motions and associated flow patterns of a swimming giant danio (Danio malabaricus). Experimental flow-visualization techniques have been employed to obtain the unsteady two-dimensional velocity fields around the straight-line swimming motions and a 60 degrees turn of the fish in the centerline plane of the fish depth. A three-dimensional numerical method is also employed to predict the total velocity field through simulation. Comparison of the experimental and numerical velocity and vorticity fields shows good agreement. The fish morphology, with its narrow peduncle region, allows for smooth flow into the articulated tail, which is able to sustain a large load for thrust generation. Streamlines of the flow detail complex processes that enhance the efficiency of flow actuation by the tail. The fish benefits from smooth near-body flow patterns and the generation of controlled body-bound vorticity, which is propagated towards the tail, shed prior to the peduncle region and then manipulated by the caudal fin to form large-scale vortical structures with minimum wasted energy. This manipulation of body-generated vorticity and its interaction with the vorticity generated by the oscillating caudal fin are fundamental to the propulsion and maneuvering capabilities of fish.

317 citations

Journal ArticleDOI
TL;DR: Inflected boundary layers, suggestive of incipient separation, were observed sporadically, but appeared to be stabilized at later phases of the undulatory cycle, which may be evidence of hydrodynamic sensing and response towards the optimization of swimming performance.
Abstract: Tangential and normal velocity profiles of the boundary layer surrounding live swimming fish were determined by digital particle tracking velocimetry, DPTV. Two species were examined: the scup Stenotomus chrysops, a carangiform swimmer, and the smooth dogfish Mustelus canis, an anguilliform swimmer. Measurements were taken at several locations over the surfaces of the fish and throughout complete undulatory cycles of their propulsive motions. The Reynolds number based on length, Re, ranged from 3x10(3) to 3x10(5). In general, boundary layer profiles were found to match known laminar and turbulent profiles including those of Blasius, Falkner and Skan and the law of the wall. In still water, boundary layer profile shape always suggested laminar flow. In flowing water, boundary layer profile shape suggested laminar flow at lower Reynolds numbers and turbulent flow at the highest Reynolds numbers. In some cases, oscillation between laminar and turbulent profile shapes with body phase was observed. Local friction coefficients, boundary layer thickness and fluid velocities at the edge of the boundary layer were suggestive of local oscillatory and mean streamwise acceleration of the boundary layer. The behavior of these variables differed significantly in the boundary layer over a rigid fish. Total skin friction was determined. Swimming fish were found to experience greater friction drag than the same fish stretched straight in the flow. Nevertheless, the power necessary to overcome friction drag was determined to be within previous experimentally measured power outputs. No separation of the boundary layer was observed around swimming fish, suggesting negligible form drag. Inflected boundary layers, suggestive of incipient separation, were observed sporadically, but appeared to be stabilized at later phases of the undulatory cycle. These phenomena may be evidence of hydrodynamic sensing and response towards the optimization of swimming performance.

227 citations

Proceedings ArticleDOI
02 Jun 1996
TL;DR: In this article, a self-optimizing motion controller based on a genetic algorithm was developed for a flexible hull robotic undersea vehicle propelled by an oscillating foil, which effectively uses evolutionary principles to exponentially optimize swimming performance.
Abstract: Determining the optimal swimming motion for a flexible hull robotic undersea vehicle propelled by an oscillating foil is an acutely complex problem involving the vehicle's body kinematics and the hydrodynamics of the surrounding water. The overall intractability of the hydrodynamics of a flexible body precludes a purely analytical solution. The immense size of the experimental variable space prevents a purely empirical one. In order to overcome both difficulties, we have developed a self-optimizing motion controller based on a genetic algorithm. This controller effectively uses evolutionary principles to exponentially optimize swimming performance.

166 citations


Cited by
More filters
Book
01 Dec 1996
TL;DR: Clark as mentioned in this paper argues that the mental has been treated as a realm that is distinct from the body and the world, and argues that a key to understanding brains is to see them as controllers of embodied activity.
Abstract: From the Publisher: The old opposition of matter versus mind stubbornly persists in the way we study mind and brain. In treating cognition as problem solving, Andy Clark suggests, we may often abstract too far from the very body and world in which our brains evolved to guide us. Whereas the mental has been treated as a realm that is distinct from the body and the world, Clark forcefully attests that a key to understanding brains is to see them as controllers of embodied activity. From this paradigm shift he advances the construction of a cognitive science of the embodied mind.

3,745 citations

Book ChapterDOI
01 Jan 1997
TL;DR: The boundary layer equations for plane, incompressible, and steady flow are described in this paper, where the boundary layer equation for plane incompressibility is defined in terms of boundary layers.
Abstract: The boundary layer equations for plane, incompressible, and steady flow are $$\matrix{ {u{{\partial u} \over {\partial x}} + v{{\partial u} \over {\partial y}} = - {1 \over \varrho }{{\partial p} \over {\partial x}} + v{{{\partial ^2}u} \over {\partial {y^2}}},} \cr {0 = {{\partial p} \over {\partial y}},} \cr {{{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} = 0.} \cr }$$

2,598 citations

Journal ArticleDOI
TL;DR: In this article, an overview of the swimming mechanisms employed by fish is presented, with a relevant and useful introduction to the existing literature for engineers with an interest in the emerging area of aquatic biomechanisms.
Abstract: Several physico-mechanical designs evolved in fish are currently inspiring robotic devices for propulsion and maneuvering purposes in underwater vehicles. Considering the potential benefits involved, this paper presents an overview of the swimming mechanisms employed by fish. The motivation is to provide a relevant and useful introduction to the existing literature for engineers with an interest in the emerging area of aquatic biomechanisms. The fish swimming types are presented, following the well-established classification scheme and nomenclature originally proposed by Breder. Fish swim either by body and/or caudal fin (BCF) movements or using median and/or paired fin (MPF) propulsion. The latter is generally employed at slow speeds, offering greater maneuverability and better propulsive efficiency, while BCF movements can achieve greater thrust and accelerations. For both BCF and MPF locomotion, specific swimming modes are identified, based on the propulsor and the type of movements (oscillatory or undulatory) employed for thrust generation. Along with general descriptions and kinematic data, the analytical approaches developed to study each swimming mode are also introduced. Particular reference is made to lunate tail propulsion, undulating fins, and labriform (oscillatory pectoral fin) swimming mechanisms, identified as having the greatest potential for exploitation in artificial systems.

1,512 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the progress made during the past two decades on vortex-induced vibration (VIV) of mostly circular cylindrical structures subjected to steady uniform flow is presented in this article.

1,368 citations

Journal ArticleDOI
TL;DR: In this article, the phase angle between transverse oscillation and angular motion is the critical parameter affecting the interaction of leading-edge and trailing-edge vorticity, as well as the efficiency of propulsion.
Abstract: Thrust-producing harmonically oscillating foils are studied through force and power measurements, as well as visualization data, to classify the principal characteristics of the flow around and in the wake of the foil. Visualization data are obtained using digital particle image velocimetry at Reynolds number 1100, and force and power data are measured at Reynolds number 40 000. The experimental results are compared with theoretical predictions of linear and nonlinear inviscid theory and it is found that agreement between theory and experiment is good over a certain parametric range, when the wake consists of an array of alternating vortices and either very weak or no leading-edge vortices form. High propulsive efficiency, as high as 87%, is measured experimentally under conditions of optimal wake formation. Visualization results elucidate the basic mechanisms involved and show that conditions of high efficiency are associated with the formation on alternating sides of the foil of a moderately strong leading-edge vortex per half-cycle, which is convected downstream and interacts with trailing-edge vorticity, resulting eventually in the formation of a reverse Karman street. The phase angle between transverse oscillation and angular motion is the critical parameter affecting the interaction of leading-edge and trailing-edge vorticity, as well as the efficiency of propulsion.

1,209 citations