scispace - formally typeset
Search or ask a question
Author

Mark A. Wall

Other affiliations: Howard Hughes Medical Institute
Bio: Mark A. Wall is an academic researcher from University of Texas Southwestern Medical Center. The author has contributed to research in topics: Protein structure & G protein-coupled receptor. The author has an hindex of 8, co-authored 8 publications receiving 2433 citations. Previous affiliations of Mark A. Wall include Howard Hughes Medical Institute.

Papers
More filters
Journal ArticleDOI
15 Dec 1995-Cell
TL;DR: The structure of the G protein heterotrimer Gi alpha 1(GDP)beta 1 gamma 2 (at 2.3 A) reveals two nonoverlapping regions of contact between alpha and beta, an extended interface between beta and nearly all of gamma, and limited interaction of alpha with gamma as mentioned in this paper.

1,071 citations

Journal ArticleDOI
TL;DR: A sequence-based statistical method for quantitatively mapping the global network of amino acid interactions in a protein, which suggests that evolutionarily conserved sparse networks of amino Acid interactions represent structural motifs for allosteric communication in proteins.
Abstract: A fundamental goal in cellular signaling is to understand allosteric communication, the process by which signals originating at one site in a protein propagate reliably to affect distant functional sites. The general principles of protein structure that underlie this process remain unknown. Here, we describe a sequence-based statistical method for quantitatively mapping the global network of amino acid interactions in a protein. Application of this method for three structurally and functionally distinct protein families (G protein–coupled receptors, the chymotrypsin class of serine proteases and hemoglobins) reveals a surprisingly simple architecture for amino acid interactions in each protein family: a small subset of residues forms physically connected networks that link distant functional sites in the tertiary structure. Although small in number, residues comprising the network show excellent correlation with the large body of mechanistic data available for each family. The data suggest that evolutionarily conserved sparse networks of amino acid interactions represent structural motifs for allosteric communication in proteins.

754 citations

Journal ArticleDOI
TL;DR: The 1.9 Å crystal structure of DsRed, a red fluorescent protein from Discosoma coral, is reported, revealing the chemical basis for the functional properties of red fluorescent proteins and provides the basis for rational engineering of this subfamily of GFP homologs.
Abstract: Green fluorescent protein (GFP) has rapidly become a standard tool for investigating a variety of cellular activities, and has served as a model system for understanding spectral tuning in chromophoric proteins. Distant homologs of GFP in reef coral and anemone display two new properties of the fluorescent protein family: dramatically red-shifted spectra, and oligomerization to form tetramers. We now report the 1.9 A crystal structure of DsRed, a red fluorescent protein from Discosoma coral. DsRed monomers show similar topology to GFP, but additional chemical modification to the chromophore extends the conjugated pi-system and likely accounts for the red-shifted spectra. Oligomerization of DsRed occurs at two chemically distinct protein interfaces to assemble the tetramer. The DsRed structure reveals the chemical basis for the functional properties of red fluorescent proteins and provides the basis for rational engineering of this subfamily of GFP homologs.

337 citations

Journal ArticleDOI
TL;DR: The Gly203-->Ala mutant of Gialpha1 binds and hydrolyzes GTP normally but does not dissociate from Gbetagamma, demonstrating that GTP binding and activation can be uncoupled.

107 citations

Journal ArticleDOI
05 Oct 2007-Cell
TL;DR: These studies demonstrate a conformational switch mechanism for PDZ domain function and suggest that INAD behaves more like a dynamic machine rather than a passive scaffold, regulating signal transduction at the millisecond timescale through cycles of conformational change.

97 citations


Cited by
More filters
Journal ArticleDOI
20 Sep 2002-Cell
TL;DR: Current structural and cell biological data suggest models for how integrins transmit signals between their extracellular ligand binding adhesion sites and their cytoplasmic domains, which link to the cytoskeleton and to signal transduction pathways.

8,275 citations

Journal ArticleDOI
14 Nov 1997-Cell
TL;DR: Mutation of the active site of caspase-9 attenuated the activation of cazase-3 and cellular apoptotic response in vivo, indicating that casp enzyme-9 is the most upstream member of the apoptotic protease cascade that is triggered by cytochrome c and dATP.

7,231 citations

Journal ArticleDOI
02 May 1997-Cell
TL;DR: This research was supported by grants from the National Institutes of Health (HL20948) and the Perot Family Foundation.

3,626 citations

Journal ArticleDOI
08 Aug 1997-Cell
TL;DR: The purification and cDNA cloning of Apaf-1, a novel 130 kd protein from HeLa cell cytosol that participates in the cytochrome c-dependent activation of caspase-3, leading to apoptosis is reported here.

3,231 citations

Journal ArticleDOI
29 Sep 2011-Nature
TL;DR: This crystal structure represents the first high-resolution view of transmembrane signalling by a GPCR and the most surprising observation is a major displacement of the α-helical domain of Gαs relative to the Ras-like GTPase domain.
Abstract: G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signalling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist-occupied receptor. The b2 adrenergic receptor (b2AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signalling. Here we present the crystal structure of the active state ternary complex composed of agonist-occupied monomericb2AR and nucleotide-free Gs heterotrimer. The principal interactions between the b2AR and Gs involve the amino- and carboxy-terminal a-helices of Gs, with conformational changes propagating to the nucleotide-binding pocket. The

2,676 citations