scispace - formally typeset
Search or ask a question
Author

Mark Blei

Bio: Mark Blei is an academic researcher from Arizona State University. The author has contributed to research in topics: Exciton & Monolayer. The author has an hindex of 17, co-authored 47 publications receiving 1144 citations. Previous affiliations of Mark Blei include ICFO – The Institute of Photonic Sciences.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the optical detection of strongly correlated phases in semiconducting WSe2/WS2 moire superlattices is presented, revealing a Mott insulator state at one hole per super-lattice site and surprising insulating phases at fractional filling factors of 1/3 and 2/3.
Abstract: Moire superlattices are emerging as a new route for engineering strongly correlated electronic states in two-dimensional van der Waals heterostructures, as recently demonstrated in the correlated insulating and superconducting states in magic-angle twisted bilayer graphene and ABC trilayer graphene/boron nitride moire superlattices. Transition metal dichalcogenide (TMDC) moire heterostructures provide another exciting model system to explore correlated quantum phenomena, with the addition of strong light-matter interactions and large spin-orbital coupling. Here we report the optical detection of strongly correlated phases in semiconducting WSe2/WS2 moire superlattices. Our sensitive optical detection technique reveals a Mott insulator state at one hole per superlattice site ({ u} = 1), and surprising insulating phases at fractional filling factors { u} = 1/3 and 2/3, which we assign to generalized Wigner crystallization on an underlying lattice. Furthermore, the unique spin-valley optical selection rules of TMDC heterostructures allow us to optically create and investigate low-energy spin excited states in the Mott insulator. We reveal an especially slow spin relaxation lifetime of many microseconds in the Mott insulating state, orders-of-magnitude longer than that of charge excitations. Our studies highlight novel correlated physics that can emerge in moire superlattices beyond graphene.

517 citations

Journal ArticleDOI
18 Mar 2020-Nature
TL;DR: In this paper, the authors used a sensitive optical detection technique and revealed a Mott insulator state at one hole per superlattice site and surprising insulating phases at 1/3 and 2/3 filling of the super-attice, which they assign to generalized Wigner crystallization on the underlying lattice.
Abstract: Moire superlattices can be used to engineer strongly correlated electronic states in two-dimensional van der Waals heterostructures, as recently demonstrated in the correlated insulating and superconducting states observed in magic-angle twisted-bilayer graphene and ABC trilayer graphene/boron nitride moire superlattices1-4. Transition metal dichalcogenide moire heterostructures provide another model system for the study of correlated quantum phenomena5 because of their strong light-matter interactions and large spin-orbit coupling. However, experimental observation of correlated insulating states in this system is challenging with traditional transport techniques. Here we report the optical detection of strongly correlated phases in semiconducting WSe2/WS2 moire superlattices. We use a sensitive optical detection technique and reveal a Mott insulator state at one hole per superlattice site and surprising insulating phases at 1/3 and 2/3 filling of the superlattice, which we assign to generalized Wigner crystallization on the underlying lattice6-11. Furthermore, the spin-valley optical selection rules12-14 of transition metal dichalcogenide heterostructures allow us to optically create and investigate low-energy excited spin states in the Mott insulator. We measure a very long spin relaxation lifetime of many microseconds in the Mott insulating state, orders of magnitude longer than that of charge excitations. Our studies highlight the value of using moire superlattices beyond graphene to explore correlated physics.

248 citations

Journal ArticleDOI
08 Nov 2018-ACS Nano
TL;DR: The experimental results demonstrate that the 2D GeAs crystals have promising potential for polarization optical applications, and are consistent with the theoretical calculation of band structure and band realignment.
Abstract: The ability to detect linearly polarized light is central to practical applications in polarized optical and optoelectronic fields and has been successfully demonstrated with polarized photodetection of in-plane anisotropic two-dimensional (2D) materials. Here, we report the anisotropic optical characterization of a group IV-V compound-2D germanium arsenic (GeAs) with anisotropic monoclinic structures. High-quality 2D GeAs crystals show the representative angle-resolved Raman property. The in-plane anisotropic optical nature of the GeAs crystal is further investigated by polarization-resolved absorption spectra (400-2000 nm) and polarization-sensitive photodetectors. From the visible to the near-infrared range, 2D GeAs nanoflakes demonstrate the distinct perpendicular optical reversal with a 75-80° angle on both the linear dichroism and polarization-sensitive photodetection. Obvious anisotropic features and the high dichroic ratio of Ipmax /Ipmin ∼ 1.49 at 520 nm and Ipmax /Ipmin ∼ 4.4 at 830 nm are achieved by the polarization-sensitive photodetection. The polarization-dependent photocurrent mapping implied that the polarized photocurrent mainly occurred at the Schottky photodiodes between electrode/GeAs interface. These experimental results are consistent with the theoretical calculation of band structure and band realignment. Besides the excellent polarization-sensitive photoresponse properties, GeAs-based photodetectors also exhibit rapid on/off response. These results demonstrate that the 2D GeAs crystals have promising potential for polarization optical applications.

131 citations

Journal ArticleDOI
20 Apr 2022-ACS Nano
TL;DR: A comprehensive review of 2D magnetism can be found in this paper , where prominent authors with expertise in complementary fields of magnetism (i.e., synthesis, device engineering, magneto-optics, imaging, transport, mechanics, spin excitations, and theory and simulations) have joined together to provide a genome of current knowledge and a guideline for future developments in 2D magnetic materials research.
Abstract: Magnetism in two-dimensional (2D) van der Waals (vdW) materials has recently emerged as one of the most promising areas in condensed matter research, with many exciting emerging properties and significant potential for applications ranging from topological magnonics to low-power spintronics, quantum computing, and optical communications. In the brief time after their discovery, 2D magnets have blossomed into a rich area for investigation, where fundamental concepts in magnetism are challenged by the behavior of spins that can develop at the single layer limit. However, much effort is still needed in multiple fronts before 2D magnets can be routinely used for practical implementations. In this comprehensive review, prominent authors with expertise in complementary fields of 2D magnetism (i.e., synthesis, device engineering, magneto-optics, imaging, transport, mechanics, spin excitations, and theory and simulations) have joined together to provide a genome of current knowledge and a guideline for future developments in 2D magnetic materials research.

100 citations

Journal ArticleDOI
30 Sep 2021-Nature
TL;DR: In this paper, the 2D Wigner crystal lattice was directly visualized in real-space using a specially designed non-invasive STM spectroscopy technique, which employs a graphene sensing layer held close to the WSe2/WS2 superlattice.
Abstract: The Wigner crystal1 has fascinated condensed matter physicists for nearly 90 years2–14. Signatures of two-dimensional (2D) Wigner crystals were first observed in 2D electron gases under high magnetic field2–4, and recently reported in transition metal dichalcogenide moire superlattices6–9. Direct observation of the 2D Wigner crystal lattice in real space, however, has remained an outstanding challenge. Conventional scanning tunnelling microscopy (STM) has sufficient spatial resolution but induces perturbations that can potentially alter this fragile state. Here we demonstrate real-space imaging of 2D Wigner crystals in WSe2/WS2 moire heterostructures using a specially designed non-invasive STM spectroscopy technique. This employs a graphene sensing layer held close to the WSe2/WS2 moire superlattice. Local STM tunnel current into the graphene layer is modulated by the underlying Wigner crystal electron lattice in the WSe2/WS2 heterostructure. Different Wigner crystal lattice configurations at fractional electron fillings of n = 1/3, 1/2 and 2/3, where n is the electron number per site, are directly visualized. The n = 1/3 and n = 2/3 Wigner crystals exhibit triangular and honeycomb lattices, respectively, to minimize nearest-neighbour occupations. The n = 1/2 state spontaneously breaks the original C3 symmetry and forms a stripe phase. Our study lays a solid foundation for understanding Wigner crystal states in WSe2/WS2 moire heterostructures and provides an approach that is generally applicable for imaging novel correlated electron lattices in other systems. So far, only indirect evidence of Wigner crystals has been reported, but a specially designed scanning tunnelling microscope is used here to directly image them in a moire heterostructure.

99 citations


Cited by
More filters
Proceedings Article
14 Jul 1996
TL;DR: The striking signature of Bose condensation was the sudden appearance of a bimodal velocity distribution below the critical temperature of ~2µK.
Abstract: Bose-Einstein condensation (BEC) has been observed in a dilute gas of sodium atoms. A Bose-Einstein condensate consists of a macroscopic population of the ground state of the system, and is a coherent state of matter. In an ideal gas, this phase transition is purely quantum-statistical. The study of BEC in weakly interacting systems which can be controlled and observed with precision holds the promise of revealing new macroscopic quantum phenomena that can be understood from first principles.

3,530 citations

Journal Article
TL;DR: In this paper, it was shown that the itinerant ferromagnetic order persists in Fe3GeTe2 down to the monolayer with an out-of-plane magnetocrystalline anisotropy.
Abstract: Materials research has driven the development of modern nano-electronic devices. In particular, research in magnetic thin films has revolutionized the development of spintronic devices1,2 because identifying new magnetic materials is key to better device performance and design. Van der Waals crystals retain their chemical stability and structural integrity down to the monolayer and, being atomically thin, are readily tuned by various kinds of gate modulation3,4. Recent experiments have demonstrated that it is possible to obtain two-dimensional ferromagnetic order in insulating Cr2Ge2Te6 (ref. 5) and CrI3 (ref. 6) at low temperatures. Here we develop a device fabrication technique and isolate monolayers from the layered metallic magnet Fe3GeTe2 to study magnetotransport. We find that the itinerant ferromagnetism persists in Fe3GeTe2 down to the monolayer with an out-of-plane magnetocrystalline anisotropy. The ferromagnetic transition temperature, Tc, is suppressed relative to the bulk Tc of 205 kelvin in pristine Fe3GeTe2 thin flakes. An ionic gate, however, raises Tc to room temperature, much higher than the bulk Tc. The gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 opens up opportunities for potential voltage-controlled magnetoelectronics7-11 based on atomically thin van der Waals crystals.

1,017 citations

Posted Content
TL;DR: In this article, a novel crystal configuration of sandwiched S-Mo-Se structure (Janus SMoSe) at the monolayer limit has been synthesized and carefully characterized.
Abstract: A novel crystal configuration of sandwiched S-Mo-Se structure (Janus SMoSe) at the monolayer limit has been synthesized and carefully characterized in this work. By controlled sulfurization of monolayer MoSe2 the top layer of selenium atoms are substituted by sulfur atoms while the bottom selenium layer remains intact. The peculiar structure of this new material is systematically investigated by Raman, photoluminescence and X-ray photoelectron spectroscopy and confirmed by transmission-electron microscopy and time-of-flight secondary ion mass spectrometry. Density-functional theory calculations are performed to better understand the Raman vibration modes and electronic structures of the Janus SMoSe monolayer, which are found to correlate well with corresponding experimental results. Finally, high basal plane hydrogen evolution reaction (HER) activity is discovered for the Janus monolayer and DFT calculation implies that the activity originates from the synergistic effect of the intrinsic defects and structural strain inherent in the Janus structure.

649 citations

Journal ArticleDOI
TL;DR: In this article, the status and prospects for flat-band engineering in van der Waals heterostructures and explore how both phenomena emerge from the moire flat bands are reviewed and discussed.
Abstract: Strongly correlated systems can give rise to spectacular phenomenology, from high-temperature superconductivity to the emergence of states of matter characterized by long-range quantum entanglement. Low-density flat-band systems play a vital role because the energy range of the band is so narrow that the Coulomb interactions dominate over kinetic energy, putting these materials in the strongly-correlated regime. Experimentally, when a band is narrow in both energy and momentum, its filling may be tuned in situ across the whole range, from empty to full. Recently, one particular flat-band system—that of van der Waals heterostructures, such as twisted bilayer graphene—has exhibited strongly correlated states and superconductivity, but it is still not clear to what extent the two are linked. Here, we review the status and prospects for flat-band engineering in van der Waals heterostructures and explore how both phenomena emerge from the moire flat bands. The identification of superconductivity and strong interactions in twisted bilayer 2D materials prompted many questions about the interplay of these phenomena. This Perspective presents the status of the field and the urgent issues for future study.

506 citations

Journal ArticleDOI
01 Jul 2020-Nature
TL;DR: Twisted double bilayer graphene devices show tunable spin-polarized correlated states that are sensitive to electric and magnetic fields, providing further insights into correlated states in two-dimensional moiré materials.
Abstract: Reducing the energy bandwidth of electrons in a lattice below the long-range Coulomb interaction energy promotes correlation effects. Moire superlattices—which are created by stacking van der Waals heterostructures with a controlled twist angle1–3—enable the engineering of electron band structure. Exotic quantum phases can emerge in an engineered moire flat band. The recent discovery of correlated insulator states, superconductivity and the quantum anomalous Hall effect in the flat band of magic-angle twisted bilayer graphene4–8 has sparked the exploration of correlated electron states in other moire systems9–11. The electronic properties of van der Waals moire superlattices can further be tuned by adjusting the interlayer coupling6 or the band structure of constituent layers9. Here, using van der Waals heterostructures of twisted double bilayer graphene (TDBG), we demonstrate a flat electron band that is tunable by perpendicular electric fields in a range of twist angles. Similarly to magic-angle twisted bilayer graphene, TDBG shows energy gaps at the half- and quarter-filled flat bands, indicating the emergence of correlated insulator states. We find that the gaps of these insulator states increase with in-plane magnetic field, suggesting a ferromagnetic order. On doping the half-filled insulator, a sudden drop in resistivity is observed with decreasing temperature. This critical behaviour is confined to a small area in the density–electric-field plane, and is attributed to a phase transition from a normal metal to a spin-polarized correlated state. The discovery of spin-polarized correlated states in electric-field-tunable TDBG provides a new route to engineering interaction-driven quantum phases. Twisted double bilayer graphene devices show tunable spin-polarized correlated states that are sensitive to electric and magnetic fields, providing further insights into correlated states in two-dimensional moire materials.

468 citations