scispace - formally typeset
Search or ask a question
Author

Mark Chaffin

Bio: Mark Chaffin is an academic researcher from Broad Institute. The author has contributed to research in topics: Genome-wide association study & Population. The author has an hindex of 30, co-authored 71 publications receiving 4405 citations. Previous affiliations of Mark Chaffin include Massachusetts Institute of Technology & Colby College.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: Genome-wide polygenic risk scores derived from GWAS data for five common diseases can identify subgroups of the population with risk approaching or exceeding that of a monogenic mutation.
Abstract: A key public health need is to identify individuals at high risk for a given disease to enable enhanced screening or preventive therapies. Because most common diseases have a genetic component, one important approach is to stratify individuals based on inherited DNA variation1. Proposed clinical applications have largely focused on finding carriers of rare monogenic mutations at several-fold increased risk. Although most disease risk is polygenic in nature2-5, it has not yet been possible to use polygenic predictors to identify individuals at risk comparable to monogenic mutations. Here, we develop and validate genome-wide polygenic scores for five common diseases. The approach identifies 8.0, 6.1, 3.5, 3.2, and 1.5% of the population at greater than threefold increased risk for coronary artery disease, atrial fibrillation, type 2 diabetes, inflammatory bowel disease, and breast cancer, respectively. For coronary artery disease, this prevalence is 20-fold higher than the carrier frequency of rare monogenic mutations conferring comparable risk6. We propose that it is time to contemplate the inclusion of polygenic risk prediction in clinical care, and discuss relevant issues.

1,962 citations

Journal ArticleDOI
Carolina Roselli1, Mark Chaffin1, Lu-Chen Weng2, Lu-Chen Weng1  +257 moreInstitutions (82)
TL;DR: This large, multi-ethnic genome-wide association study identifies 97 loci significantly associated with atrial fibrillation that are enriched for genes involved in cardiac development, electrophysiology, structure and contractile function.
Abstract: Atrial fibrillation (AF) affects more than 33 million individuals worldwide1 and has a complex heritability2. We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF.

477 citations

Journal ArticleDOI
TL;DR: Analysis of genetic data and blood lipid measurements from over 300,000 participants in the Million Veteran Program identifies new associations for blood lipid traits and proposes novel indications for pharmaceutical inhibitors targeting PCSK9, ANGPTL4 (type 2 diabetes) and PDE3B (triglycerides and coronary disease).
Abstract: The Million Veteran Program (MVP) was established in 2011 as a national research initiative to determine how genetic variation influences the health of US military veterans Here we genotyped 312,571 MVP participants using a custom biobank array and linked the genetic data to laboratory and clinical phenotypes extracted from electronic health records covering a median of 100 years of follow-up Among 297,626 veterans with at least one blood lipid measurement, including 57,332 black and 24,743 Hispanic participants, we tested up to around 32 million variants for association with lipid levels and identified 118 novel genome-wide significant loci after meta-analysis with data from the Global Lipids Genetics Consortium (total n > 600,000) Through a focus on mutations predicted to result in a loss of gene function and a phenome-wide association study, we propose novel indications for pharmaceutical inhibitors targeting PCSK9 (abdominal aortic aneurysm), ANGPTL4 (type 2 diabetes) and PDE3B (triglycerides and coronary disease) Analysis of genetic data and blood lipid measurements from over 300,000 participants in the Million Veteran Program identifies new associations for blood lipid traits

447 citations

Journal ArticleDOI
Sonia Shah1, Albert Henry2, Carolina Roselli3, Honghuang Lin4  +164 moreInstitutions (58)
TL;DR: Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension.
Abstract: Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies.

326 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: March 5, 2019 e1 WRITING GROUP MEMBERS Emelia J. Virani, MD, PhD, FAHA, Chair Elect On behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee.
Abstract: March 5, 2019 e1 WRITING GROUP MEMBERS Emelia J. Benjamin, MD, ScM, FAHA, Chair Paul Muntner, PhD, MHS, FAHA, Vice Chair Alvaro Alonso, MD, PhD, FAHA Marcio S. Bittencourt, MD, PhD, MPH Clifton W. Callaway, MD, FAHA April P. Carson, PhD, MSPH, FAHA Alanna M. Chamberlain, PhD Alexander R. Chang, MD, MS Susan Cheng, MD, MMSc, MPH, FAHA Sandeep R. Das, MD, MPH, MBA, FAHA Francesca N. Delling, MD, MPH Luc Djousse, MD, ScD, MPH Mitchell S.V. Elkind, MD, MS, FAHA Jane F. Ferguson, PhD, FAHA Myriam Fornage, PhD, FAHA Lori Chaffin Jordan, MD, PhD, FAHA Sadiya S. Khan, MD, MSc Brett M. Kissela, MD, MS Kristen L. Knutson, PhD Tak W. Kwan, MD, FAHA Daniel T. Lackland, DrPH, FAHA Tené T. Lewis, PhD Judith H. Lichtman, PhD, MPH, FAHA Chris T. Longenecker, MD Matthew Shane Loop, PhD Pamela L. Lutsey, PhD, MPH, FAHA Seth S. Martin, MD, MHS, FAHA Kunihiro Matsushita, MD, PhD, FAHA Andrew E. Moran, MD, MPH, FAHA Michael E. Mussolino, PhD, FAHA Martin O’Flaherty, MD, MSc, PhD Ambarish Pandey, MD, MSCS Amanda M. Perak, MD, MS Wayne D. Rosamond, PhD, MS, FAHA Gregory A. Roth, MD, MPH, FAHA Uchechukwu K.A. Sampson, MD, MBA, MPH, FAHA Gary M. Satou, MD, FAHA Emily B. Schroeder, MD, PhD, FAHA Svati H. Shah, MD, MHS, FAHA Nicole L. Spartano, PhD Andrew Stokes, PhD David L. Tirschwell, MD, MS, MSc, FAHA Connie W. Tsao, MD, MPH, Vice Chair Elect Mintu P. Turakhia, MD, MAS, FAHA Lisa B. VanWagner, MD, MSc, FAST John T. Wilkins, MD, MS, FAHA Sally S. Wong, PhD, RD, CDN, FAHA Salim S. Virani, MD, PhD, FAHA, Chair Elect On behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee

5,739 citations

Journal ArticleDOI
TL;DR: This year's edition of the Statistical Update includes data on the monitoring and benefits of cardiovascular health in the population, metrics to assess and monitor healthy diets, an enhanced focus on social determinants of health, a focus on the global burden of cardiovascular disease, and further evidence-based approaches to changing behaviors, implementation strategies, and implications of the American Heart Association’s 2020 Impact Goals.
Abstract: Background: The American Heart Association, in conjunction with the National Institutes of Health, annually reports on the most up-to-date statistics related to heart disease, stroke, and cardiovas...

5,078 citations

Journal ArticleDOI
27 May 2020-Nature
TL;DR: A catalogue of predicted loss-of-function variants in 125,748 whole-exome and 15,708 whole-genome sequencing datasets from the Genome Aggregation Database (gnomAD) reveals the spectrum of mutational constraints that affect these human protein-coding genes.
Abstract: Genetic variants that inactivate protein-coding genes are a powerful source of information about the phenotypic consequences of gene disruption: genes that are crucial for the function of an organism will be depleted of such variants in natural populations, whereas non-essential genes will tolerate their accumulation. However, predicted loss-of-function variants are enriched for annotation errors, and tend to be found at extremely low frequencies, so their analysis requires careful variant annotation and very large sample sizes1. Here we describe the aggregation of 125,748 exomes and 15,708 genomes from human sequencing studies into the Genome Aggregation Database (gnomAD). We identify 443,769 high-confidence predicted loss-of-function variants in this cohort after filtering for artefacts caused by sequencing and annotation errors. Using an improved model of human mutation rates, we classify human protein-coding genes along a spectrum that represents tolerance to inactivation, validate this classification using data from model organisms and engineered human cells, and show that it can be used to improve the power of gene discovery for both common and rare diseases. A catalogue of predicted loss-of-function variants in 125,748 whole-exome and 15,708 whole-genome sequencing datasets from the Genome Aggregation Database (gnomAD) reveals the spectrum of mutational constraints that affect these human protein-coding genes.

4,913 citations

01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations