scispace - formally typeset
Search or ask a question
Author

Mark Crovella

Bio: Mark Crovella is an academic researcher from Boston University. The author has contributed to research in topics: Network packet & The Internet. The author has an hindex of 65, co-authored 193 publications receiving 24101 citations. Previous affiliations of Mark Crovella include University of Wisconsin-Madison & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that the self-similarity in WWW traffic can be explained based on the underlying distributions of WWW document sizes, the effects of caching and user preference in file transfer, the effect of user "think time", and the superimposition of many such transfers in a local-area network.
Abstract: The notion of self-similarity has been shown to apply to wide-area and local-area network traffic. We show evidence that the subset of network traffic that is due to World Wide Web (WWW) transfers can show characteristics that are consistent with self-similarity, and we present a hypothesized explanation for that self-similarity. Using a set of traces of actual user executions of NCSA Mosaic, we examine the dependence structure of WWW traffic. First, we show evidence that WWW traffic exhibits behavior that is consistent with self-similar traffic models. Then we show that the self-similarity in such traffic can be explained based on the underlying distributions of WWW document sizes, the effects of caching and user preference in file transfer, the effect of user "think time", and the superimposition of many such transfers in a local-area network. To do this, we rely on empirically measured distributions both from client traces and from data independently collected at WWW servers.

2,608 citations

Journal ArticleDOI
15 May 1996
TL;DR: It is shown that the self-similarity in WWW traffic can be explained based on the underlying distributions of WWW document sizes, the effects of caching and user preference in file transfer, the effect of user "think time", and the superimposition of many such transfers in a local area network.
Abstract: Recently the notion of self-similarity has been shown to apply to wide-area and local-area network traffic. In this paper we examine the mechanisms that give rise to the self-similarity of network traffic. We present a hypothesized explanation for the possible self-similarity of traffic by using a particular subset of wide area traffic: traffic due to the World Wide Web (WWW). Using an extensive set of traces of actual user executions of NCSA Mosaic, reflecting over half a million requests for WWW documents, we examine the dependence structure of WWW traffic. While our measurements are not conclusive, we show evidence that WWW traffic exhibits behavior that is consistent with self-similar traffic models. Then we show that the self-similarity in such traffic can be explained based on the underlying distributions of WWW document sizes, the effects of caching and user preference in file transfer, the effect of user "think time", and the superimposition of many such transfers in a local area network. To do this we rely on empirically measured distributions both from our traces and from data independently collected at over thirty WWW sites.

2,332 citations

Proceedings ArticleDOI
01 Jun 1998
TL;DR: This paper applies a number of observations of Web server usage to create a realistic Web workload generation tool which mimics a set of real users accessing a server and addresses the technical challenges to satisfying this large set of simultaneous constraints on the properties of the reference stream.
Abstract: One role for workload generation is as a means for understanding how servers and networks respond to variation in load. This enables management and capacity planning based on current and projected usage. This paper applies a number of observations of Web server usage to create a realistic Web workload generation tool which mimics a set of real users accessing a server. The tool, called Surge (Scalable URL Reference Generator) generates references matching empirical measurements of 1) server file size distribution; 2) request size distribution; 3) relative file popularity; 4) embedded file references; 5) temporal locality of reference; and 6) idle periods of individual users. This paper reviews the essential elements required in the generation of a representative Web workload. It also addresses the technical challenges to satisfying this large set of simultaneous constraints on the properties of the reference stream, the solutions we adopted, and their associated accuracy. Finally, we present evidence that Surge exercises servers in a manner significantly different from other Web server benchmarks.

1,549 citations

Patent
09 Apr 2001
TL;DR: In this article, the authors present a system and apparatus for efficient and reliable, control and distribution of data files or portions of files, applications, or other data objects in large-scale distributed networks.
Abstract: The present invention provides a system and apparatus for efficient and reliable, control and distribution of data files or portions of files, applications, or other data objects in large-scale distributed networks. A unique content-management front-end provides efficient controls for triggering distribution of digitized data content to selected groups of a large number of remote computer servers. Transport-layer protocols interact with distribution controllers to automatically determine an optimized tree-like distribution sequence to group leaders selected by network devices at each remote site. Reliable store-and-forward transfer to clusters is accomplished using a unicast protocol in the ordered tree sequence. Once command messages and content arrive at all participating group leaders, local hybrid multicast protocols efficiently and reliably distribute them to the back-end nodes for interpretation and execution. Positive acknowledgement is then sent back to the content manager from each group leader, and the updated content in each remote device autonomously goes 'live' when the content change is locally completed.

1,261 citations

Proceedings ArticleDOI
22 Aug 2005
TL;DR: It is argued that the distributions of packet features observed in flow traces reveals both the presence and the structure of a wide range of anomalies, and that using feature distributions, anomalies naturally fall into distinct and meaningful clusters that can be used to automatically classify anomalies and to uncover new anomaly types.
Abstract: The increasing practicality of large-scale flow capture makes it possible to conceive of traffic analysis methods that detect and identify a large and diverse set of anomalies. However the challenge of effectively analyzing this massive data source for anomaly diagnosis is as yet unmet. We argue that the distributions of packet features (IP addresses and ports) observed in flow traces reveals both the presence and the structure of a wide range of anomalies. Using entropy as a summarization tool, we show that the analysis of feature distributions leads to significant advances on two fronts: (1) it enables highly sensitive detection of a wide range of anomalies, augmenting detections by volume-based methods, and (2) it enables automatic classification of anomalies via unsupervised learning. We show that using feature distributions, anomalies naturally fall into distinct and meaningful clusters. These clusters can be used to automatically classify anomalies and to uncover new anomaly types. We validate our claims on data from two backbone networks (Abilene and Geant) and conclude that feature distributions show promise as a key element of a fairly general network anomaly diagnosis framework.

1,228 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this paper, a simple model based on the power-law degree distribution of real networks was proposed, which was able to reproduce the power law degree distribution in real networks and to capture the evolution of networks, not just their static topology.
Abstract: The emergence of order in natural systems is a constant source of inspiration for both physical and biological sciences. While the spatial order characterizing for example the crystals has been the basis of many advances in contemporary physics, most complex systems in nature do not offer such high degree of order. Many of these systems form complex networks whose nodes are the elements of the system and edges represent the interactions between them. Traditionally complex networks have been described by the random graph theory founded in 1959 by Paul Erdohs and Alfred Renyi. One of the defining features of random graphs is that they are statistically homogeneous, and their degree distribution (characterizing the spread in the number of edges starting from a node) is a Poisson distribution. In contrast, recent empirical studies, including the work of our group, indicate that the topology of real networks is much richer than that of random graphs. In particular, the degree distribution of real networks is a power-law, indicating a heterogeneous topology in which the majority of the nodes have a small degree, but there is a significant fraction of highly connected nodes that play an important role in the connectivity of the network. The scale-free topology of real networks has very important consequences on their functioning. For example, we have discovered that scale-free networks are extremely resilient to the random disruption of their nodes. On the other hand, the selective removal of the nodes with highest degree induces a rapid breakdown of the network to isolated subparts that cannot communicate with each other. The non-trivial scaling of the degree distribution of real networks is also an indication of their assembly and evolution. Indeed, our modeling studies have shown us that there are general principles governing the evolution of networks. Most networks start from a small seed and grow by the addition of new nodes which attach to the nodes already in the system. This process obeys preferential attachment: the new nodes are more likely to connect to nodes with already high degree. We have proposed a simple model based on these two principles wich was able to reproduce the power-law degree distribution of real networks. Perhaps even more importantly, this model paved the way to a new paradigm of network modeling, trying to capture the evolution of networks, not just their static topology.

18,415 citations

Journal ArticleDOI
TL;DR: The latest version of STRING more than doubles the number of organisms it covers, and offers an option to upload entire, genome-wide datasets as input, allowing users to visualize subsets as interaction networks and to perform gene-set enrichment analysis on the entire input.
Abstract: Proteins and their functional interactions form the backbone of the cellular machinery. Their connectivity network needs to be considered for the full understanding of biological phenomena, but the available information on protein-protein associations is incomplete and exhibits varying levels of annotation granularity and reliability. The STRING database aims to collect, score and integrate all publicly available sources of protein-protein interaction information, and to complement these with computational predictions. Its goal is to achieve a comprehensive and objective global network, including direct (physical) as well as indirect (functional) interactions. The latest version of STRING (11.0) more than doubles the number of organisms it covers, to 5090. The most important new feature is an option to upload entire, genome-wide datasets as input, allowing users to visualize subsets as interaction networks and to perform gene-set enrichment analysis on the entire input. For the enrichment analysis, STRING implements well-known classification systems such as Gene Ontology and KEGG, but also offers additional, new classification systems based on high-throughput text-mining as well as on a hierarchical clustering of the association network itself. The STRING resource is available online at https://string-db.org/.

10,584 citations

Journal ArticleDOI
TL;DR: This survey tries to provide a structured and comprehensive overview of the research on anomaly detection by grouping existing techniques into different categories based on the underlying approach adopted by each technique.
Abstract: Anomaly detection is an important problem that has been researched within diverse research areas and application domains. Many anomaly detection techniques have been specifically developed for certain application domains, while others are more generic. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection. We have grouped existing techniques into different categories based on the underlying approach adopted by each technique. For each category we have identified key assumptions, which are used by the techniques to differentiate between normal and anomalous behavior. When applying a given technique to a particular domain, these assumptions can be used as guidelines to assess the effectiveness of the technique in that domain. For each category, we provide a basic anomaly detection technique, and then show how the different existing techniques in that category are variants of the basic technique. This template provides an easier and more succinct understanding of the techniques belonging to each category. Further, for each category, we identify the advantages and disadvantages of the techniques in that category. We also provide a discussion on the computational complexity of the techniques since it is an important issue in real application domains. We hope that this survey will provide a better understanding of the different directions in which research has been done on this topic, and how techniques developed in one area can be applied in domains for which they were not intended to begin with.

9,627 citations

Proceedings ArticleDOI
30 Aug 1999
TL;DR: These power-laws hold for three snapshots of the Internet, between November 1997 and December 1998, despite a 45% growth of its size during that period, and can be used to generate and select realistic topologies for simulation purposes.
Abstract: Despite the apparent randomness of the Internet, we discover some surprisingly simple power-laws of the Internet topology. These power-laws hold for three snapshots of the Internet, between November 1997 and December 1998, despite a 45% growth of its size during that period. We show that our power-laws fit the real data very well resulting in correlation coefficients of 96% or higher.Our observations provide a novel perspective of the structure of the Internet. The power-laws describe concisely skewed distributions of graph properties such as the node outdegree. In addition, these power-laws can be used to estimate important parameters such as the average neighborhood size, and facilitate the design and the performance analysis of protocols. Furthermore, we can use them to generate and select realistic topologies for simulation purposes.

5,023 citations