scispace - formally typeset
Search or ask a question
Author

Mark D. Butala

Bio: Mark D. Butala is an academic researcher from Zhejiang University. The author has contributed to research in topics: Kalman filter & Ionosphere. The author has an hindex of 16, co-authored 45 publications receiving 1009 citations. Previous affiliations of Mark D. Butala include Jet Propulsion Laboratory & University of Illinois at Urbana–Champaign.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a new MHD model for simulating the large-scale structure of the solar corona and solar wind under "steady state" conditions stemming from the Wang-Sheeley-Arge empirical model was presented.
Abstract: We present a new MHD model for simulating the large-scale structure of the solar corona and solar wind under "steady state" conditions stemming from the Wang-Sheeley-Arge empirical model. The processes of turbulent heating in the solar wind are parameterized using a phenomenological, thermodynamical model with a varied polytropic index. We employ the Bernoulli integral to bridge the asymptotic solar wind speed with the assumed distribution of the polytropic index on the solar surface. We successfully reproduce the mass flux from Sun to Earth, the temperature structure, and the large-scale structure of the magnetic field. We reproduce the solar wind speed bimodal structure in the inner heliosphere. However, the solar wind speed is in a quantitative agreement with observations at 1 AU for solar maximum conditions only. The magnetic field comparison demonstrates that the input magnetogram needs to be multiplied by a scaling factor in order to obtain the correct magnitude at 1 AU.

209 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of the Tohoku earthquake and tsunami on the ionosphere near the epicenter was observed in measurements of ionospheric total electron content from 1198 GPS receivers in the Japanese GEONET network.
Abstract: [1] We observe ionospheric perturbations caused by the Tohoku earthquake and tsunami of March 11, 2011. Perturbations near the epicenter were found in measurements of ionospheric total electron content (TEC) from 1198 GPS receivers in the Japanese GEONET network. For the first time for this event, we compare these observations with the estimated magnitude and speed of a tsunami-driven atmospheric gravity wave, using an atmosphere-ionosphere-coupling model and a tsunami model of sea-surface height, respectively. Traveling ionospheric disturbances (TIDs) were observed moving away from the epicenter at approximate speeds of 3400 m/s, 1000 m/s and 200–300 m/s, consistent with Rayleigh waves, acoustic waves, and gravity waves, respectively. We focus our analysis on gravity waves moving south and east of the epicenter, since tsunamis propagating in the deep ocean have been shown to produce gravity waves detectable in ionospheric TEC in the past. Observed southeastward gravity wave perturbations, seen ∼60 min after the earthquake, are mostly between 0.5 to 1.5 TECU, representing up to ∼5% of the background vertical TEC (VTEC). Comparisons of observed TID gravity waves with the modeled tsunami speed in the ocean and the predicted VTEC perturbation amplitudes from an atmosphere-ionosphere-coupling model show the measurements and models to be in close agreement. Due to the dense GPS network and high earthquake magnitude, these are the clearest observations to date of the effect of a major earthquake and tsunami on the ionosphere near the epicenter. Such observations from a future real-time GPS receiver network could be used to validate tsunami models, confirm the existence of a tsunami, or track its motion where in situ buoy data is not available.

137 citations

Journal ArticleDOI
TL;DR: In this article, a real-time Global Assimilative Ionospheric Model (GAIM) system was proposed to monitor TEC fluctuations using JPL's real-term Global Assimilation Model (GOMA) system.
Abstract: Recent advances in GPS data processing have demonstrated that ground-based GPS receivers are capable of detecting ionospheric TEC perturbations caused by surface-generated Rayleigh, acoustic and gravity waves. There have been a number of publications discussing TEC perturbations immediately following the M 9.0 Tohoku earthquake in Japan on March 11, 2011. Most investigators have focused on the ionospheric responses up to a few hours following the earthquake and tsunami. In our research, in addition to March 11, 2011 we investigate global ionospheric TEC perturbations a day before and after the event. We also compare indices of geomagnetic activity on all three days with perturbations in TEC, revealing strong geomagnetic storm conditions that are also apparent in processed GEONET TEC observations. In addition to the traveling ionospheric disturbances (TIDs) produced by the earthquake and tsunami, we also detect “regular” TIDs across Japan about 5 hours following the Tohoku event, concluding these are likely due to geomagnetic activity. The variety of observed TEC perturbations are consistent with tsunami-generated gravity waves, auroral activity, regular TIDs and equatorial fluctuations induced by increased geomagnetic activity. We demonstrate our capabilities to monitor TEC fluctuations using JPL’s real-time Global Assimilative Ionospheric Model (GAIM) system. We show that a real-time global TEC monitoring network is able to detect the acoustic and gravity waves generated by the earthquake and tsunami. With additional real-time stations deployed, this new capability has the potential to provide real-time monitoring of TEC perturbations that could potentially serve as a plug-in to enhance existing early warning systems.

103 citations

Journal ArticleDOI
TL;DR: The Coupling, Energetics, and Dynamics of Atmospheric Regions (CEDAR) Electrodynamics Thermosphere Ionosphere (ETI) Challenge was initiated in 2009 to assess accuracy of various ionosphere/thermosphere models in reproducing ionosphere and thermosphere parameters as discussed by the authors.
Abstract: [1] Objective quantification of model performance based on metrics helps us evaluate the current state of space physics modeling capability, address differences among various modeling approaches, and track model improvements over time The Coupling, Energetics, and Dynamics of Atmospheric Regions (CEDAR) Electrodynamics Thermosphere Ionosphere (ETI) Challenge was initiated in 2009 to assess accuracy of various ionosphere/thermosphere models in reproducing ionosphere and thermosphere parameters A total of nine events and five physical parameters were selected to compare between model outputs and observations The nine events included two strong and one moderate geomagnetic storm events from GEM Challenge events and three moderate storms and three quiet periods from the first half of the International Polar Year (IPY) campaign, which lasted for 2 years, from March 2007 to March 2009 The five physical parameters selected were NmF2 and hmF2 from ISRs and LEO satellites such as CHAMP and COSMIC, vertical drifts at Jicamarca, and electron and neutral densities along the track of the CHAMP satellite For this study, four different metrics and up to 10 models were used In this paper, we focus on preliminary results of the study using ground-based measurements, which include NmF2 and hmF2 from Incoherent Scatter Radars (ISRs), and vertical drifts at Jicamarca The results show that the model performance strongly depends on the type of metrics used, and thus no model is ranked top for all used metrics The analysis further indicates that performance of the model also varies with latitude and geomagnetic activity level

81 citations

Journal ArticleDOI
TL;DR: The new method addresses deficiencies in commonly used pseudo-observation or projection methods, which either do not solve the constrained problem completely or have unstable numerical implementations, due in part to the degeneracy in the estimator statistics.
Abstract: We present a robust null space method for linear equality constrained state space estimation. Exploiting a degeneracy in the estimator statistics, an orthogonal factorization is used to decompose the problem into stochastic and deterministic components, which are then solved separately. The resulting dimension reduction algorithm has enhanced numerical stability, solves the constrained problem completely, and can reduce computational load by reducing the problem size. The new method addresses deficiencies in commonly used pseudo-observation or projection methods, which either do not solve the constrained problem completely or have unstable numerical implementations, due in part to the degeneracy in the estimator statistics. We present a numerical example demonstrating the effectiveness of the new method compared to other current methods.

78 citations


Cited by
More filters
01 Apr 2003
TL;DR: The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it as mentioned in this paper, and also presents new ideas and alternative interpretations which further explain the success of the EnkF.
Abstract: The purpose of this paper is to provide a comprehensive presentation and interpretation of the Ensemble Kalman Filter (EnKF) and its numerical implementation. The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it. This paper reviews the important results from these studies and also presents new ideas and alternative interpretations which further explain the success of the EnKF. In addition to providing the theoretical framework needed for using the EnKF, there is also a focus on the algorithmic formulation and optimal numerical implementation. A program listing is given for some of the key subroutines. The paper also touches upon specific issues such as the use of nonlinear measurements, in situ profiles of temperature and salinity, and data which are available with high frequency in time. An ensemble based optimal interpolation (EnOI) scheme is presented as a cost-effective approach which may serve as an alternative to the EnKF in some applications. A fairly extensive discussion is devoted to the use of time correlated model errors and the estimation of model bias.

2,975 citations

Journal ArticleDOI
TL;DR: A brief history of the IRI project is given, the latest version of the model, IRI-2012, is described and efforts to develop a real-time IRI model are discussed.
Abstract: The International Reference Ionosphere (IRI) project was established jointly by the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) in the late sixties with the goal to develop an international standard for the specification of plasma parameters in the Earth’s ionosphere. COSPAR needed such a specification for the evaluation of environmental effects on spacecraft and experiments in space, and URSI for radiowave propagation studies and applications. At the request of COSPAR and URSI, IRI was developed as a data-based model to avoid the uncertainty of theory-based models which are only as good as the evolving theoretical understanding. Being based on most of the available and reliable observations of the ionospheric plasma from the ground and from space, IRI describes monthly averages of electron density, electron temperature, ion temperature, ion composition, and several additional parameters in the altitude range from 60 km to 2000 km. A working group of about 50 international ionospheric experts is in charge of developing and improving the IRI model. Over time as new data became available and new modeling techniques emerged, steadily improved editions of the IRI model have been published. This paper gives a brief history of the IRI project and describes the latest version of the model, IRI-2012. It also briefly discusses efforts to develop a real-time IRI model. The IRI homepage is at http://IRImodel.org.

572 citations

Journal ArticleDOI
TL;DR: In this paper, a forward modeling method was developed to study the coronal mass ejections observed with STEREO/SECCHI, using a geometric model of a flux rope to determine the 3D direction of propagation, the three-dimensional velocity and acceleration of the CME front, and in most of the cases the flux rope orientation and length.
Abstract: We describe a forward modeling method developed to study the coronal mass ejections observed with STEREO/SECCHI. We present a survey of 26 CMEs modeled with this method. We selected most of the bright events observed since November 2007 to August 2008, after when the separation was greater than 40° degrees, thus showing noticeable differences between the two views. From these stereoscopic observations and using a geometric model of a flux rope, we are able to determine the three-dimensional direction of propagation, the three-dimensional velocity and acceleration of the CME front, and in most of the cases the flux rope orientation and length. We define a merit function that allows us to partially automate the fit, as well as perform a sensitivity analysis on the model parameters. We find a precision on the longitude and latitude to be of a maximum of ±17° and ±4°, respectively, for a 10% decrease of the merit function but a precision on the flux rope orientation and length to be almost one order of magnitude larger, showing that these parameters are more difficult to estimate using only coronagraph data. Finally, comparison with independent measurements shows a good agreement with the direction and speed we estimated.

534 citations

Journal ArticleDOI
TL;DR: The recent developments for robot vision are surveyed to enable easy referral to suitable methods for practical solutions and representative contributions and future research trends are addressed.
Abstract: Kalman filters have received much attention with the increasing demands for robotic automation. This paper briefly surveys the recent developments for robot vision. Among many factors that affect the performance of a robotic system, Kalman filters have made great contributions to vision perception. Kalman filters solve uncertainties in robot localization, navigation, following, tracking, motion control, estimation and prediction, visual servoing and manipulation, and structure reconstruction from a sequence of images. In the 50th anniversary, we have noticed that more than 20 kinds of Kalman filters have been developed so far. These include extended Kalman filters and unscented Kalman filters. In the last 30 years, about 800 publications have reported the capability of these filters in solving robot vision problems. Such problems encompass a rather wide application area, such as object modeling, robot control, target tracking, surveillance, search, recognition, and assembly, as well as robotic manipulation, localization, mapping, navigation, and exploration. These reports are summarized in this review to enable easy referral to suitable methods for practical solutions. Representative contributions and future research trends are also addressed in an abstract level.

452 citations