scispace - formally typeset
Search or ask a question
Author

Mark Driscoll

Bio: Mark Driscoll is an academic researcher from State University of New York College of Environmental Science and Forestry. The author has contributed to research in topics: Ultimate tensile strength & Cellulose. The author has an hindex of 7, co-authored 14 publications receiving 311 citations. Previous affiliations of Mark Driscoll include State University of New York at Purchase & State University of New York Upstate Medical University.

Papers
More filters
Journal ArticleDOI
30 Nov 2020-Polymers
TL;DR: The fundamentals of polymerization reactions are herein presented to meet industrial needs for various polymer materials produced or degraded by irradiation, and the competition between the crosslinking reactions of C-centered free radicals and their reactions with oxygen is described through fundamental mechanism formalisms.
Abstract: Ionizing radiation has become the most effective way to modify natural and synthetic polymers through crosslinking, degradation, and graft polymerization. This review will include an in-depth analysis of radiation chemistry mechanisms and the kinetics of the radiation-induced C-centered free radical, anion, and cation polymerization, and grafting. It also presents sections on radiation modifications of synthetic and natural polymers. For decades, low linear energy transfer (LLET) ionizing radiation, such as gamma rays, X-rays, and up to 10 MeV electron beams, has been the primary tool to produce many products through polymerization reactions. Photons and electrons interaction with polymers display various mechanisms. While the interactions of gamma ray and X-ray photons are mainly through the photoelectric effect, Compton scattering, and pair-production, the interactions of the high-energy electrons take place through coulombic interactions. Despite the type of radiation used on materials, photons or high energy electrons, in both cases ions and electrons are produced. The interactions between electrons and monomers takes place within less than a nanosecond. Depending on the dose rate (dose is defined as the absorbed radiation energy per unit mass), the kinetic chain length of the propagation can be controlled, hence allowing for some control over the degree of polymerization. When polymers are submitted to high-energy radiation in the bulk, contrasting behaviors are observed with a dominant effect of cross-linking or chain scission, depending on the chemical nature and physical characteristics of the material. Polymers in solution are subject to indirect effects resulting from the radiolysis of the medium. Likewise, for radiation-induced polymerization, depending on the dose rate, the free radicals generated on polymer chains can undergo various reactions, such as inter/intramolecular combination or inter/intramolecular disproportionation, b-scission. These reactions lead to structural or functional polymer modifications. In the presence of oxygen, playing on irradiation dose-rates, one can favor crosslinking reactions or promotes degradations through oxidations. The competition between the crosslinking reactions of C-centered free radicals and their reactions with oxygen is described through fundamental mechanism formalisms. The fundamentals of polymerization reactions are herein presented to meet industrial needs for various polymer materials produced or degraded by irradiation. Notably, the medical and industrial applications of polymers are endless and thus it is vital to investigate the effects of sterilization dose and dose rate on various polymers and copolymers with different molecular structures and morphologies. The presence or absence of various functional groups, degree of crystallinity, irradiation temperature, etc. all greatly affect the radiation chemistry of the irradiated polymers. Over the past decade, grafting new chemical functionalities on solid polymers by radiation-induced polymerization (also called RIG for Radiation-Induced Grafting) has been widely exploited to develop innovative materials in coherence with actual societal expectations. These novel materials respond not only to health emergencies but also to carbon-free energy needs (e.g., hydrogen fuel cells, piezoelectricity, etc.) and environmental concerns with the development of numerous specific adsorbents of chemical hazards and pollutants. The modification of polymers through RIG is durable as it covalently bonds the functional monomers. As radiation penetration depths can be varied, this technique can be used to modify polymer surface or bulk. The many parameters influencing RIG that control the yield of the grafting process are discussed in this review. These include monomer reactivity, irradiation dose, solvent, presence of inhibitor of homopolymerization, grafting temperature, etc. Today, the general knowledge of RIG can be applied to any solid polymer and may predict, to some extent, the grafting location. A special focus is on how ionizing radiation sources (ion and electron beams, UVs) may be chosen or mixed to combine both solid polymer nanostructuration and RIG. LLET ionizing radiation has also been extensively used to synthesize hydrogel and nanogel for drug delivery systems and other advanced applications. In particular, nanogels can either be produced by radiation-induced polymerization and simultaneous crosslinking of hydrophilic monomers in "nanocompartments", i.e., within the aqueous phase of inverse micelles, or by intramolecular crosslinking of suitable water-soluble polymers. The radiolytically produced oxidizing species from water, •OH radicals, can easily abstract H-atoms from the backbone of the dissolved polymers (or can add to the unsaturated bonds) leading to the formation of C-centered radicals. These C-centered free radicals can undergo two main competitive reactions; intramolecular and intermolecular crosslinking. When produced by electron beam irradiation, higher temperatures, dose rates within the pulse, and pulse repetition rates favour intramolecular crosslinking over intermolecular crosslinking, thus enabling a better control of particle size and size distribution. For other water-soluble biopolymers such as polysaccharides, proteins, DNA and RNA, the abstraction of H atoms or the addition to the unsaturation by •OH can lead to the direct scission of the backbone, double, or single strand breaks of these polymers.

143 citations

Journal ArticleDOI
TL;DR: Using a 90kW, 3MeV Dynamitron, the molecular weight of microcrystalline cellulose (MCC) was reduced from 82,000 to 5000Da with a dose of 100kGy as discussed by the authors.

110 citations

Journal ArticleDOI
30 Jul 2015-Energies
TL;DR: In this paper, lignin recovered from the hot-water extract of sugar maple (Acer saccharum) is used to synthesize adhesive blends to replace phenol-formaldehyde (PF) resin.
Abstract: Lignin recovered from the hot-water extract of sugar maple (Acer saccharum) is used in this study to synthesize adhesive blends to replace phenol-formaldehyde (PF) resin. Untreated lignin is characterized by lignin content and nuclear magnetic resonance (NMR) analysis. The molecular weight distribution of the lignin and the blends are characterized by size exclusion chromatography (SEC). The effect of pH (0.3, 0.65 and 1), ex situ furfural, and curing conditions on the tensile properties of adhesive reinforced glass fibers is determined and compared to the reinforcement level of commercially available PF resin. The adhesive blend prepared at pH = 0.65 with no added furfural exhibits the highest tensile properties and meets 90% of the PF tensile strength.

83 citations

Journal ArticleDOI
TL;DR: Evidence is provided that when EB pretreatment is utilized in combination with HW extraction, higher conversion rates and yields of glucose can be obtained from the cellulosic fraction of switchgrass.

49 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss how ionizing radiation can be used to make a wood-based biorefinery more environmentally friendly and profitable for its operators, which can then initiate chemical reactions and cleavage of chemical bonds.

27 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present an insight on currently available pre-treatment technologies for deconstruction and fractionation of lignocellulosic biomass for development of LCL feedstock based biorefinery.

336 citations

Journal ArticleDOI
TL;DR: As fossil fuel resources dwindle and new regulations for a cleaner and safer environment come on stream, there is growing interest in developing new sustainable feedstocks for future fuels, chemicals, polymers and fibers.

314 citations

Journal ArticleDOI
01 Mar 2017-Energy
TL;DR: In this paper, the authors have tried to establish a strong connection between pretreatment options and their combination with prior and post pretreatment processes, which is pre-requisite to success of establishing the commercial facility.

240 citations

Journal ArticleDOI
TL;DR: It is hoped this review will stimulate further advances in the sustainable production of value-added products from lignin to integrate this invaluable "bio-waste" into the chemical/materials supply chain.
Abstract: Despite the enormous research efforts in recent years regarding lignin depolymerisation and functionalisation, few commercial products are available. This review provides a summary and viewpoint of extensive research in the lignin-to-product valorisation chain, with an emphasis on downstream processing of lignin derived feedstock into end products. It starts with an introduction of available platform chemicals and polymeric derivatives generated from lignin via existing depolymerisation and functionalisation technologies. Following that, detailed analyses of various strategies for the downstream processing of lignin derived platform chemicals and materials into fuels, valued-added chemicals and functional polymers are provided. A concise techno-economic analysis of various downstream processes is conducted based on the market demand of the end product, economic potential and technological readiness, enabling the identification of processes that are potentially both economically competitive and commercially feasible, and shedding light on processes which deserve further technological development. We wish this review will stimulate further advances in the sustainable production of value-added products from lignin to integrate this invaluable “bio-waste” into the chemical/materials supply chain.

232 citations

Journal ArticleDOI
TL;DR: In this paper, the main focus is on the research conducted on sustainable bio-based adhesive systems for wood panels, and Lignin, tannin, protein, and starch have been evaluated as both raw materials and adhesive alternatives to existing amino-based thermosetting adhesives.
Abstract: Changes in both formaldehyde legislations and voluntary requirements (e.g. Germany RAL) are currently the driving factors behind research on alternatives to amino-based adhesives; moreover, consumer interest in healthy and sustainable products is increasing in bio-based adhesives. Sources of formaldehyde emissions in wood-based panels as well as different emission test methods have been discussed, and the main focus of this review is on the research conducted on sustainable bio-based adhesive systems for wood panels. Lignin, tannin, protein, and starch have been evaluated as both raw materials and adhesive alternatives to existing amino-based thermosetting adhesives. Adhesion improving modifications of these bio-based raw materials as well as the available and experimental crosslinkers have also been taken into account.

230 citations