scispace - formally typeset
Search or ask a question

Showing papers by "Mark E. Cooper published in 2011"


Journal ArticleDOI
Georg Ehret1, Georg Ehret2, Georg Ehret3, Patricia B. Munroe4  +388 moreInstitutions (110)
06 Oct 2011-Nature
TL;DR: A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function, and these findings suggest potential novel therapeutic pathways for cardiovascular disease prevention.
Abstract: Blood pressure is a heritable trait(1) influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (>= 140 mm Hg systolic blood pressure or >= 90 mm Hg diastolic blood pressure)(2). Even small increments in blood pressure are associated with an increased risk of cardiovascular events(3). This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.

1,829 citations


Journal ArticleDOI
06 Apr 2011-Nature
TL;DR: As resistance mushrooms, governments must make development of new antibiotics financially viable for industry, say Matthew A. Cooper and David Shlaes.
Abstract: As resistance mushrooms, governments must make development of new antibiotics financially viable for industry, say Matthew A. Cooper and David Shlaes.

422 citations


Journal ArticleDOI
TL;DR: It is timely to review the role of promising biomarkers in predicting CKD progression and/or CVD risk in CKD, including neutrophil gelatinase-associated lipocalin, kidney injury molecule-1, and liver-type fatty acid-binding protein.

393 citations


Journal ArticleDOI
01 Jan 2011-Diabetes
TL;DR: These miRNAs appear to be intricately involved in fibrogenesis, both as downstream mediators of TGF-β signaling and as components of feedback regulation, and as such represent important new targets for the prevention of progressive kidney disease in the context of diabetes.
Abstract: OBJECTIVE Progressive fibrosis in the diabetic kidney is driven and sustained by a diverse range of profibrotic factors. This study examines the critical role of microRNAs (miRNAs) in the regulation of the key fibrotic mediators, TGF-β1 and TGF-β2. RESEARCH DESIGN AND METHODS Rat proximal-tubular epithelial cells (NRK52E) were treated with TGF-β1 and TGF-β2 for 3 days, and expression of markers of epithelial-to-mesenchymal transition (EMT) and fibrogenesis were assessed by RT-PCR and Western blotting. The expression of miR-141 and miR-200a was also assessed, as was their role as translational repressors of TGF-β signaling. Finally, these pathways were explored in two different mouse models, representing early and advanced diabetic nephropathy. RESULTS Both TGF-β1 and TGF-β2 induced EMT and fibrogenesis in NRK52E cells. TGF-β1 and TGF-β2 also downregulated expression of miR-200a. The importance of these changes was demonstrated by the finding that ectopic expression miR-200a downregulated smad-3 activity and the expression of matrix proteins and prevented TGF-β–dependent EMT. miR-200a also downregulated the expression of TGF-β2, via direct interaction with the 3′ untranslated region of TGF-β2. The renal expression of miR-141 and miR-200a was also reduced in mouse models representing early and advanced kidney disease. CONCLUSIONS miR-200a and miR-141 significantly impact on the development and progression of TGF-β–dependent EMT and fibrosis in vitro and in vivo. These miRNAs appear to be intricately involved in fibrogenesis, both as downstream mediators of TGF-β signaling and as components of feedback regulation, and as such represent important new targets for the prevention of progressive kidney disease in the context of diabetes.

314 citations


Journal ArticleDOI
TL;DR: The greater the acute fall in glomerular filtration rate, during losartan treatment, the slower the rate of long-term eGFR decline, and interpretation of trial results relying on slope-based GFR outcomes should separate the initial drug-induced GFR change from the subsequent long- term effect on GFR.

286 citations


Journal ArticleDOI
TL;DR: The 20 new antibiotics launched since 2000 and the 40 compounds currently in active clinical development are listed and the NP or synthetic derivation is discussed, with activity against Gram-negative bacteria highlighted.
Abstract: The emergence of multi-drug-resistant bacteria and the lack of new antibiotics in the antibiotic drug development pipeline, especially those with new modes of action, is a major health concern. This review lists the 20 new antibiotics launched since 2000 and records the 40 compounds currently in active clinical development. Compounds in the pipeline from new antibiotic classes are reviewed in detail with reference to their development status, mode of action, spectrum of activity and lead discovery. In addition, the NP or synthetic derivation is discussed, with activity against Gram-negative bacteria highlighted.

254 citations


Journal ArticleDOI
TL;DR: A modelling approach is proposed here to characterize broadly (large geographic area, long-term period) and locally (field experiment) drought-related environmental stresses, which enables breeders to analyse their experimental trials with regard to the broad population of environments that they target.
Abstract: Genotype-environment interactions (GEI) limit genetic gain for complex traits such as tolerance to drought. Characterization of the crop environment is an important step in understanding GEI. A modelling approach is proposed here to characterize broadly (large geographic area, long-term period) and locally (field experiment) drought-related environmental stresses, which enables breeders to analyse their experimental trials with regard to the broad population of environments that they target. Water-deficit patterns experienced by wheat crops were determined for drought-prone north-eastern Australia, using the APSIM crop model to account for the interactions of crops with their environment (e.g. feedback of plant growth on water depletion). Simulations based on more than 100 years of historical climate data were conducted for representative locations, soils, and management systems, for a check cultivar, Hartog. The three main environment types identified differed in their patterns of simulated water stress around flowering and during grain-filling. Over the entire region, the terminal drought-stress pattern was most common (50% of production environments) followed by a flowering stress (24%), although the frequencies of occurrence of the three types varied greatly across regions, years, and management. This environment classification was applied to 16 trials relevant to late stages testing of a breeding programme. The incorporation of the independently-determined environment types in a statistical analysis assisted interpretation of the GEI for yield among the 18 representative genotypes by reducing the relative effect of GEI compared with genotypic variance, and helped to identify opportunities to improve breeding and germplasm-testing strategies for this region.

246 citations


Journal ArticleDOI
TL;DR: The existence of rugged yield-performance landscapes with multiple peaks and intervening valleys of lower performance supports the proposition that phenotyping strategies, and the directions emphasized in genomic selection can be improved by creating knowledge of the topology of yield-trait performance landscapes.
Abstract: The effectiveness of breeding strategies to increase drought resistance in crops could be increased further if some of the complexities in gene-to-phenotype (G/P) relations associated with epistasis, pleiotropy, and genotype-byenvironment interactions could be captured in realistic G/P models, and represented in a quantitative manner useful for selection. This paper outlines a promising methodology. First, the concept of landscapes was extended from the study of fitness landscapes used in evolutionary genetics to the characterization of yield–trait-performance landscapes for agricultural environments and applications in plant breeding. Second, the E(NK) model of trait genetic architecture was extended to incorporate biophysical, physiological, and statistical components. Third, a graphical representation is proposed to visualize the yield–trait performance landscape concept for use in selection decisions. The methodology was demonstrated at a particular stage of a maize breeding programme with the objective of improving the drought tolerance of maize hybrids for the US Western Corn-Belt. The application of the framework to the genetic improvement of drought tolerance in maize supported selection of Doubled Haploid (DH) lines with improved levels of drought tolerance based on physiological genetic knowledge, prediction of testcross yield within the target population of environments, and their predicted potential to sustain further genetic progress with additional cycles of selection. The existence of rugged yield-performance landscapes with multiple peaks and intervening valleys of lower performance, as shown in this study, supports the proposition that phenotyping strategies, and the directions emphasized in genomic selection can be improved by creating knowledge of the topology of yield–trait performance landscapes.

195 citations


Journal ArticleDOI
TL;DR: This paper highlights theoretical and practical aspects of the principles that underpin acoustic analysis, then reviews exemplary papers in key application areas involving small molecular weight ligands, carbohydrates, proteins, nucleic acids, viruses, bacteria, cells and membrane interfaces.
Abstract: Since the publication of the original review of piezoelectric acoustic sensors in this series there has been a consistent, gradual expansion in the number of published papers using ‘quartz crystal microbalances’ (QCM). Between 2001 and 2009, the number of QCM publications per annum has increased from 49 to 273, with a two-fold increase in papers per annum between 2004 and 2008. Within the field, comparing the time covered by the current to the previous review, there are trends towards increasing use of QCM in the study of protein adsorption to surfaces (93% increase), homeostasis (67% increase), protein–protein interactions (40% increase) and carbohydrates (43% increase). New commercial systems have been released that are driving the uptake of the technology for characterization of binding specificities, affinities, kinetics and conformational changes associated with a molecular recognition event. This paper highlights theoretical and practical aspects of the principles that underpin acoustic analysis, then reviews exemplary papers in key application areas involving small molecular weight ligands, carbohydrates, proteins, nucleic acids, viruses, bacteria, cells and membrane interfaces.

169 citations


Journal ArticleDOI
TL;DR: In this article, a post hoc analysis of 1342 patients with type 2 diabetes mellitus and nephropathy participating in the Reduction of Endpoints in Non-Insulin-Dependent Diabetes Mellitus With the Angiotensin II Antagonist Losartan Trial, determined the relationship between month 6 change in SUA and renal endpoints, defined as a doubling of serum creatinine or end-stage renal disease.
Abstract: Emerging data show that increased serum uric acid (SUA) concentration is an independent risk factor for end-stage renal disease. Treatment with the antihypertensive drug losartan lowers SUA. Whether reductions in SUA during losartan therapy are associated with renoprotection is unclear. We therefore tested this hypothesis. In a post hoc analysis of 1342 patients with type 2 diabetes mellitus and nephropathy participating in the Reduction of Endpoints in Non-Insulin-Dependent Diabetes Mellitus With the Angiotensin II Antagonist Losartan Trial, we determined the relationship between month 6 change in SUA and renal endpoints, defined as a doubling of serum creatinine or end-stage renal disease. Baseline SUA was 6.7 mg/dL in placebo and losartan-treated subjects. During the first 6 months, losartan lowered SUA by -0.16 mg/dL (95% CI: -0.30 to -0.01; P=0.031) as compared with placebo. The risk of renal events was decreased by 6% (95% CI: 10% to 3%) per 0.5-mg/dL decrement in SUA during the first 6 months. This effect was independent of other risk markers, including estimate glomerular filtration rate and albuminuria. Adjustment of the overall treatment effects for SUA attenuated losartan's renoprotective effect from 22% (95% CI: 6% to 35%) to 17% (95% CI: 1% to 31%), suggesting that approximately one fifth of losartan's renoprotective effect could be attributed to its effect on SUA. Losartan lowers SUA levels compared with placebo treatment in patients with type 2 diabetes mellitus and nephropathy. The degree of reduction in SUA is subsequently associated with the degree in long-term renal risk reduction and explains part of losartan's renoprotective effect. These findings support the view that SUA may be a modifiable risk factor for renal disease.

168 citations


Journal ArticleDOI
TL;DR: This study highlights that using dengue NS1 antigen detection in combination with anti-glycoprotein E IgM and IgG serology can significantly increase the sensitivity of acute d Dengue diagnosis and extends the possible window of detection to include very early acute samples and enhances the clinical utility of rapid immunochromatographic testing fordengue.
Abstract: Background Serological tests for IgM and IgG are routinely used in clinical laboratories for the rapid diagnosis of dengue and can differentiate between primary and secondary infections. Dengue virus non-structural protein 1 (NS1) has been identified as an early marker for acute dengue, and is typically present between days 1–9 post-onset of illness but following seroconversion it can be difficult to detect in serum. Aims To evaluate the performance of a newly developed Panbio® Dengue Early Rapid test for NS1 and determine if it can improve diagnostic sensitivity when used in combination with a commercial IgM/IgG rapid test. Methodology The clinical performance of the Dengue Early Rapid was evaluated in a retrospective study in Vietnam with 198 acute laboratory-confirmed positive and 100 negative samples. The performance of the Dengue Early Rapid in combination with the IgM/IgG Rapid test was also evaluated in Malaysia with 263 laboratory-confirmed positive and 30 negative samples. Key Results In Vietnam the sensitivity and specificity of the test was 69.2% (95% CI: 62.8% to 75.6%) and 96% (95% CI: 92.2% to 99.8) respectively. In Malaysia the performance was similar with 68.9% sensitivity (95% CI: 61.8% to 76.1%) and 96.7% specificity (95% CI: 82.8% to 99.9%) compared to RT-PCR. Importantly, when the Dengue Early Rapid test was used in combination with the IgM/IgG test the sensitivity increased to 93.0%. When the two tests were compared at each day post-onset of illness there was clear differentiation between the antigen and antibody markers. Conclusions This study highlights that using dengue NS1 antigen detection in combination with anti-glycoprotein E IgM and IgG serology can significantly increase the sensitivity of acute dengue diagnosis and extends the possible window of detection to include very early acute samples and enhances the clinical utility of rapid immunochromatographic testing for dengue.

Journal ArticleDOI
TL;DR: Specific inhibitors of the various pathways are now available and these emerging pharmaceutical interventions might have potential implications for the prevention and treatment of diabetic nephropathy.
Abstract: As the increasing prevalence of diabetes reaches epidemic proportions worldwide, diabetic nephropathy and associated end-stage renal failure will be an unavoidable major health burden to not only individuals with diabetes and their families, but also to the health systems both in developed and developing countries. Over the past decade, a large body of research has focused on diabetic nephropathy ranging from studies in molecular signaling, hemodynamic regulation and pharmaceutical intervention to clinical outcomes. It is likely that the pathophysiology of diabetic nephropathy involves a multifactorial interaction between metabolic and hemodynamic factors. Metabolic factors involve glucose-dependent pathways, such as advanced glycation end-products and their receptors. Hemodynamic factors include various vasoactive hormones, such as components of the renin–angiotensin system. It is likely that these metabolic and hemodynamic factors interact through shared molecular and signaling pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells and protein kinase C with associated reactive oxygen species generation. It is likely that these contributing factors cause pathological damage not only to the glomerulus, in particular podocytes, but also to the tubulointerstitium. Specific inhibitors of the various pathways are now available and these emerging pharmaceutical interventions might have potential implications for the prevention and treatment of diabetic nephropathy. The mainstay of therapy remains the achievement of optimal glycemic and blood pressure control in order to slow the progression of diabetic nephropathy. Agents that interrupt the renin–angiotensin system have been shown to be particularly useful as renoprotective agents in both hypertensive and normotensive type 1 and type 2 diabetic subjects. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2011.00131.x, 2011)

Journal ArticleDOI
01 Jun 2011-Diabetes
TL;DR: Diabetic nephropathy is associated with dedifferentiation of podocytes, losing the specialized features required for efficient glomerular function and acquiring a number of profibrotic, proinflammatory, and proliferative features from tight junction and cytoskeletal rearrangement, augmented proliferation, and apoptosis.
Abstract: OBJECTIVE Diabetic nephropathy is associated with dedifferentiation of podocytes, losing the specialized features required for efficient glomerular function and acquiring a number of profibrotic, proinflammatory, and proliferative features. These result from tight junction and cytoskeletal rearrangement, augmented proliferation, and apoptosis. RESEARCH DESIGN AND METHODS Experiments were performed in conditionally immortalized human podocytes developed by transfection with the temperature-sensitive SV40-T gene. Cells were then cultured in the presence of transforming growth factor (TGF)-β1 or angiotensin II in the presence or absence of a selective inhibitor of the TGF-β type I receptor kinase, SB-431542. Gene and protein expression were then examined by real-time RT-PCR and immunofluorescence, and correlated with changes observed in vivo in experimental diabetes. RESULTS Treatment of cells with TGF-β1 resulted in dynamic changes in their morphology, starting with retraction and shortening of foot processes and finishing with the formation of broad and complex tight junctions between adjacent podocytes. This dedifferentiation was also associated with dose- and time-dependent reduction in the expression of glomerular epithelial markers (nephrin, p -cadherin, zonnula occludens-1) and increased expression of mesenchymal markers (α−smooth muscle actin, vimentin, nestin), matrix components (fibronectin, collagen I, and collagen IV α3), cellular proliferation, and apoptosis. The induction of diabetes in mice was also associated with similar changes in morphology, protein expression, and proliferation in glomerular podocytes. CONCLUSIONS In response to TGF-β and other TGF-dependent stimuli, mature podocytes undergo dedifferentiation that leads to effacement of foot processes, morphologic flattening, and increased formation of intercellular tight junctions. This simplification of their phenotype to a more embryonic form is also associated with reentry of mature podocytes into the cell cycle, which results in enhanced proliferation and apoptosis. These “pathoadaptive” changes are seen early in the diabetic glomerulus and ultimately contribute to albuminuria, glomerulosclerosis, and podocytopenia.

Journal ArticleDOI
TL;DR: Renal function and an inflammatory profile were improved following the low-AGE diet and treatment of the RAGE knockout mice with alagebrium improved urinary albumin excretion, creatinine clearance, the inflammatory profile, and renal oxidative stress.

Journal ArticleDOI
TL;DR: Treatment with the ARB losartan is associated with a high risk of increased serum potassium levels, which is in turn associated with an increased risk of renal outcomes in patients with type 2 diabetes and nephropathy.
Abstract: Aims/hypothesis To assess the effect of an angiotensin receptor blocker (ARB) on serum potassium and the effect of a serum potassium change on renal outcomes in patients with type 2 diabetes and nephropathy.

Journal ArticleDOI
TL;DR: There has been a decrease in rates of severe hypoglycemia in a sample of youth with type 1 diabetes and a weaker relationship with glycemic control than previously observed.
Abstract: OBJECTIVE To examine rates of severe hypoglycemia (SH) in a large population-based cohort of children with type 1 diabetes and relationships to HbA 1c . RESEARCH DESIGN AND METHODS Data from 1,683 children (mean [SD] age at diagnosis 10.5 [4.2]; range 1–18 years) from 2000 to 2009 were analyzed from the Western Australian Children9s Diabetes Database. Rates of SH were related to HbA 1c using negative binomial regression. RESULTS A total of 7,378 patient-years of data and 780 SH events were recorded. The rate of SH per 100 patient-years peaked at 17.3 in 2001 and then declined from 2004 to a nadir of 5.8 in 2006. HbA 1c P = 0.29) compared with HbA 1c of 8–9%. CONCLUSIONS In a sample of youth with type 1 diabetes, there has been a decrease in rates of SH and a weaker relationship with glycemic control than previously observed.

Journal ArticleDOI
01 Feb 2011-Stroke
TL;DR: Glycoprotein VI shedding is implicated in the pathology of acute ischemic stroke because it is triggered by atherosclerotic plaque rupture and collagen-induced platelet activation during the thrombotic event.
Abstract: Background and Purpose—Ischemic stroke induced by thrombosis may be triggered by atherosclerotic plaque rupture and collagen-induced platelet activation. Collagen induces glycoprotein VI shedding. Methods—We measured plasma-soluble glycoprotein VI (sGPVI) by enzyme-linked immunosorbent assay in 159 patients with acute (<7-day) ischemic stroke and age/sex-matched community-based control subjects. Results—sGPVI was elevated in stroke compared with controls (P=0.0168). ORs were higher in Quartile 4 for stroke cases (P=0.0121), and sGPVI was significantly elevated in stroke associated with large artery disease across Quartiles 2 to 4 and small artery disease in Quartile 4. sGPVI decreased 3 to 6 months after antiplatelet treatment, consistent with elevated sGPVI due to platelet activation during the thrombotic event. sGPVI correlated with P-selectin (P=0.0007) and was higher in individuals with the GPVIa haplotype (P=0.024). Conclusion—Glycoprotein VI shedding is implicated in the pathology of acute ischemic ...

Journal ArticleDOI
TL;DR: Increased concentrations of sRAGE are associated with increased all-cause and cardiovascular mortality in type 1 diabetes, potentially reflecting the activation and production of RAGE in the context of accelerated vascular disease.
Abstract: Activation of the receptor for AGE (RAGE) is implicated in the development and progression of vascular complications of diabetes. In this study, we explore factors and mortality outcomes associated with soluble RAGE (sRAGE) in a multicentre nationwide cohort of Finnish adults with type 1 diabetes. Baseline sRAGE concentrations were estimated in 3,100 adults with type 1 diabetes. Clinical and biological variables independently associated with sRAGE were identified using multivariate regression analysis. Independent predictors of mortality were determined using Cox and Fine–Gray proportional-hazards models. The main independent determinants of sRAGE concentrations were estimated glomerular filtration rate, albuminuria, body mass index, age, duration of diabetes, HbA1c and insulin dose (all p < 0.05). During a median of 9.1 years of follow-up there were 202 deaths (7.4 per 1,000 patient years). sRAGE was independently associated with all-cause (Cox model: HR 1.03) and cardiovascular mortality (Fine–Gray competing risks model: HR 1.06) such that patients with the highest sRAGE concentrations had the greatest risk of mortality, after adjusting for age, sex, macrovascular disease, HDL-cholesterol, HbA1c, triacylglycerol, high-sensitivity C-reactive protein (hsCRP) and the presence and severity of chronic kidney disease. Although polymorphisms in the gene coding for RAGE were significantly associated with sRAGE concentrations, none were associated with mortality outcomes. Increased concentrations of sRAGE are associated with increased all-cause and cardiovascular mortality in type 1 diabetes, potentially reflecting the activation and production of RAGE in the context of accelerated vascular disease. These novel findings highlight the importance of the RAGE activation in the prevention and management of diabetic complications.

Journal ArticleDOI
01 Sep 2011-Diabetes
TL;DR: It is proposed that a genetic variation in a gene coding for a histone methyltransferase is protective for a diabetic microvascular complication of type 1 diabetes.
Abstract: OBJECTIVE Hyperglycemia plays a pivotal role in the development and progression of vascular complications, which are the major sources of morbidity and mortality in diabetes. Furthermore, these vascular complications often persist and progress despite improved glucose control, possibly as a result of prior episodes of hyperglycemia. Epigenetic markers mediated by histone methyltransferases are associated with gene activating events that promote enhanced expression of key proinflammatory molecules implicated in vascular injury. In this study, we investigated genetic polymorphisms of the SETD7, SUV39H1, and SUV39H2 methyltransferases as predictors of risk for micro- and macrovascular complications in type 1 diabetes. RESEARCH DESIGN AND METHODS In the Finnish Diabetic Nephropathy Study (FinnDiane) cohort, 37 tagSNPs were genotyped in 2,991 individuals with type 1 diabetes and diabetic retinopathy, diabetic nephropathy, and cardiovascular disease. Seven single nucleotide polymorphisms (SNPs) were genotyped in the replication cohorts from the Steno Diabetes Center and All Ireland/Warren 3/GoKinD U.K. study. RESULTS In a meta-analysis, the minor T allele of the exonic SNP rs17353856 in the SUV39H2 was associated with diabetic retinopathy (genotypic odds ratio 0.75, P = 1.2 × 10 −4 ). The same SNP showed a trend toward an association with diabetic nephropathy as well as cardiovascular disease in the FinnDiane cohort. CONCLUSIONS Our findings propose that a genetic variation in a gene coding for a histone methyltransferase is protective for a diabetic microvascular complication. The pathophysiological implications of this polymorphism or other genetic variation nearby for the vascular complications of type 1 diabetes remain to be investigated.

01 Jan 2011
TL;DR: A new meta-analysis of GWAS data that includes staged follow-up genotyping to identify additional BP loci is reported, providing new insights into the genetics and biology of BP, and suggest novel potential therapeutic pathways for cardiovascular disease prevention.
Abstract: Blood pressure (BP) is a heritable trait1 influenced by multiple biological pathways and is responsive to environmental stimuli. Over one billion people worldwide have hypertension (BP ≥140 mm Hg systolic [SBP] or ≥90 mm Hg diastolic [DBP])2. Even small increments in BP are associated with increased risk of cardiovascular events3. This genome-wide association study of SBP and DBP, which used a multi-stage design in 200,000 individuals of European descent, identified 16 novel loci: six of these loci contain genes previously known or suspected to regulate BP (GUCY1A3-GUCY1B3; NPR3-C5orf23; ADM; FURIN-FES; GOSR2; GNAS-EDN3); the other 10 provide new clues to BP physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke, and coronary artery disease, but not kidney disease or kidney function. We also observed associations with BP in East Asian, South Asian, and African ancestry individuals. Our findings provide new insights into the genetics and biology of BP, and suggest novel potential therapeutic pathways for cardiovascular disease prevention. Genetic approaches have advanced the understanding of biological pathways underlying inter-individual variation in BP. For example, studies of rare Mendelian BP disorders have identified multiple defects in renal sodium handling pathways4. More recently two genomewide association studies (GWAS), each of >25,000 individuals of European-ancestry, identified 13 loci associated with SBP, DBP, and hypertension5,6. We now report results of a new meta-analysis of GWAS data that includes staged follow-up genotyping to identify additional BP loci. Primary analyses evaluated associations between 2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and SBP and DBP in 69,395 individuals of European ancestry from 29 studies (Supplementary Materials Sections 1–3, Supplementary Tables 1– 2). Following GWAS meta-analysis, we conducted a three-stage validation experiment that made efficient use of available genotyping resources, to follow up top signals in up to 133,661 additional individuals of European descent (Supplementary Fig. 1 and Supplementary Materials Section 4). Twenty-nine independent SNPs at 28 loci were significantly associated with SBP, DBP, or both in the meta-analysis combining discovery and follow up data (Fig. 1, Table 1, Supplementary Figs 2–3, Supplementary Tables 3–5). All 29 SNPs attained association P <5×10−9, an order of magnitude beyond the standard genome-wide significance level for a single stage experiment (Table 1). Sixteen of these 29 associations were novel (Table 1). Two associations were near the FURIN and GOSR2 genes; prior targeted analyses of variants in these genes suggested they Note added in proof: Since this manuscript was submitted, Kato et al published a BP GWAS in East Asians that identified a SNP highly correlated to the SNP we report at the NPR3-c5orf23 locus28. Author contributions Full author contributions and roles are listed in the Supplementary Materials Section 19. NIH Public Access Author Manuscript Nature. Author manuscript; available in PMC 2012 May 01. Published in final edited form as: Nature. ; 478(7367): 103–109. doi:10.1038/nature10405. N IH PA Athor M anscript N IH PA Athor M anscript N IH PA Athor M anscript may be BP loci7,8. At the CACNB2 locus we validated association for a previously reported6 SNP rs4373814 and detected a novel independent association for rs1813353 (pairwise r2 =0.015 in HapMap CEU). Of our 13 previously reported associations5,6, only the association at PLCD3 was not supported by the current results (Supplementary Table 4). Some of the associations are in or near genes involved in pathways known to influence BP (NPR3, GUCY1A3-GUCY1B3, ADM, GNAS-EDN3, NPPA-NPPB, and CYP17A1; Supplementary Fig. 4). Twenty-two of the 28 loci did not contain genes that were a priori strong biological candidates. As expected from prior BP GWAS results, the effects of the novel variants on SBP and DBP were small (Fig. 1 and Table 1). For all variants, the observed directions of effects were concordant for SBP, DBP, and hypertension (Fig. 1, Table 1, Supplementary Fig. 3). Among the genes at the genome-wide significant loci, only CYP17A1, previously implicated in Mendelian congenital adrenal hyperplasia and hypertension, is known to harbour rare variants that have large effects on BP9. We performed several analyses to identify potential causal alleles and mechanisms. First, we looked up the 29 genome-wide significant index SNPs and their close proxies (r2>0.8) among cis-acting expression SNP (eSNP) results from multiple tissues (Supplementary Materials Section 5). For 13/29 index SNPs, we found association between nearby eSNP variants and expression level of at least one gene transcript (10−4 > p > 10−51, Supplementary Table 6). In 5 cases, the index BP SNP and the best eSNP from a genomewide survey were identical, highlighting potential mediators of the SNP-BP associations. Second, because changes in protein sequence are strong a priori candidates to be functional, we sought non-synonymous coding SNPs that were in high LD (r2 >0.8) with the 29 index SNPs. We identified such SNPsat 8 loci (Table 1, Supplementary Materials Section 6, Supplementary Table 7). In addition we performed analyses testing for differences in genetic effect according to body mass index (BMI) or sex, and analyses of copy number variants, pathway enrichment, and metabolomic data, but we did not find any statistically significant results (Supplementary Materials Sections 7–9, Supplementary Tables 8–10). We evaluated whether the BP variants we identified in Europeans were associated with BP in individuals of East Asian (N=29,719), South Asian (N=23,977), and African (N=19,775) ancestries (Table 1, Supplementary Tables 11–13). We found significant associations in individuals of East Asian ancestry for SNPs at 9 loci and in individuals of South Asian ancestry for SNPs at 6 loci; some have been reported previously (Supplementary Tables 12 and 15). The lack of significant association for individual SNPs may reflect small sample sizes, differences in allele frequencies or LD patterns, imprecise imputation for some ancestries using existing reference samples, or a genuinely different underlying genetic architecture. Because of limited power to detect effects of individual variants in the smaller non-European samples, we created genetic risk scores for SBP and DBP incorporating all 29 BP variants weighted according to effect sizes observed in the European samples. In each non-European ancestry group, risk scores were strongly associated with SBP (P=1.1×10−40 in East Asian, P=2.9×10−13 in South Asian, P=9.8×10−4 in African ancestry individuals) and DBP (P=2.9×10−48, P=9.5×10−15, and P=5.3×10−5, respectively; Supplementary Table 13). We also created a genetic risk score to assess association of the variants in aggregate with hypertension and with clinical measures of hypertensive complications including left ventricular mass, left ventricular wall thickness, incident heart failure, incident and prevalent stroke, prevalent coronary artery disease (CAD), kidney disease, and measures of kidney function, using results from other GWAS consortia (Table 2, Supplementary Materials Sections 10–11, Supplementary Table 14). The risk score was weighted using the average of Page 2 Nature. Author manuscript; available in PMC 2012 May 01. N IH PA Athor M anscript N IH PA Athor M anscript N IH PA Athor M anscript SBP and DBP effects for the 29 SNPs. In an independent sample of 23,294 women10, an increase of 1 standard deviation in the genetic risk score was associated with a 21% increase in the odds of hypertension (95% CI 19%–28%; Table 2, Supplementary Table 14). Among individuals in the top decile of the risk score, the prevalence of hypertension was 29% compared with 16% in the bottom decile (odds ratio 2.09, 95% CI 1.86–2.36). Similar results were observed in an independent hypertension case-control sample (Table 2). In our study, individuals in the top compared to bottom quintiles of genetic risk score differed by 4.6 mm Hg SBP and 3.0 mm Hg DBP, differences that approach population-averaged BP treatment effects for a single antihypertensive agent11. Epidemiologic data have shown that differences in SBP and DBP of this magnitude, across the population range of BP, are associated with an increase in cardiovascular disease risk3. Consistent with this and in line with findings from randomized trials of BP-lowering medication in hypertensive patients12,13, the genetic risk score was positively associated with left ventricular wall thickness (P=6.0×10−6), occurrence of stroke (P=3.3×10−5) and CAD (P=8.1×10−29). The same genetic risk score was not, however, significantly associated with chronic kidney disease or measures of kidney function, even though these renal outcomes were available in a similar sample size as for the other outcomes (Table 2). The absence of association with kidney phenotypes could be explained by a weaker causal relation of BP with kidney phenotypes than with CAD and stroke. This finding is consistent with the mismatch between observational data that show a positive association of BP with kidney disease, and clinical trial data that show inconsistent evidence of benefit of BP lowering on kidney disease prevention in patients with hypertension14. Thus, several lines of evidence converge to suggest that BP elevation may in part be a consequence rather than a cause of sub-clinical kidney disease. Our discovery meta-analysis (Supplementary Fig. 2) suggests an excess of modestly significant (10−5


Journal ArticleDOI
TL;DR: Inhibition of AGE accumulation, using a delayed intervention with alagebrium or pyridoxamine, significantly attenuated the progression of established diabetes-associated atherosclerosis, similar to results obtained with quinapril.
Abstract: Formation of AGEs is increased in the diabetic milieu, which contributes to accelerated atherogenesis. We studied whether delayed treatment with AGE-inhibiting compounds, alagebrium chloride and pyridoxamine dihydrochloride, affected established atherosclerosis in experimental diabetes in comparison with the angiotensin-converting enzyme inhibitor, quinapril. Streptozotocin-induced diabetic male Apoe −/− mice (n = 24 per group) received, by oral gavage, from week 10 to 20 of diabetes: no treatment; alagebrium (1 mg kg−1 day−1); pyridoxamine (1 g/l in drinking water); or quinapril (30 mg kg−1 day−1). Atherosclerotic lesion area (en face analysis) was evaluated for all groups. Delayed intervention with alagebrium decreased plaque area in the diabetic Apoe −/− mice compared with untreated mice (total plaque area: alagebrium 10.6 ± 1.6%, untreated, 15.1 ± 1.5%, p < 0.05). This anti-atherosclerotic effect was comparable with that achieved with quinapril (quinapril 8.4 ± 1.4%, vs untreated, p < 0.05). Pyridoxamine also attenuated plaque development in diabetic mice (5.7 ± 1.2% vs untreated 11.9 ± 1.1%, p < 0.05). The anti-atherosclerotic effect conferred by alagebrium and quinapril was associated with a significant reduction in vascular oxidative stress and circulating AGEs and methylglyoxal, although preformed AGEs were not removed from the vascular wall with either delayed intervention. Inhibition of AGE accumulation, using a delayed intervention with alagebrium or pyridoxamine, significantly attenuated the progression of established diabetes-associated atherosclerosis, similar to results obtained with quinapril. These findings provide further evidence that blockade of AGE-mediated pathways may present a novel therapy for the prevention of atherosclerosis in diabetes.

Journal ArticleDOI
TL;DR: In this paper, a review of 20 new antibiotics launched since 2000 and 40 compounds currently in active clinical development is presented, with reference to their development status, mode of action, spectrum of activity and lead discovery.
Abstract: The emergence of multi-drug-resistant bacteria and the lack of new antibiotics in the antibiotic drug development pipeline, especially those with new modes of action, is a major health concern. This review lists the 20 new antibiotics launched since 2000 and records the 40 compounds currently in active clinical development. Compounds in the pipeline from new antibiotic classes are reviewed in detail with reference to their development status, mode of action, spectrum of activity and lead discovery. In addition, the NP or synthetic derivation is discussed, with activity against Gram-negative bacteria highlighted.

Journal ArticleDOI
TL;DR: Many patients with diabetic nephropathy progress to end-stage renal disease, and new research in disease detection, diagnosis, and novel treatments will hopefully alleviate the burden of diabetic neophropathy in the future.
Abstract: Many patients with diabetic nephropathy progress to end-stage renal disease. New research in disease detection, diagnosis, and novel treatments will hopefully alleviate the burden of diabetic nephropathy in the future.

Journal ArticleDOI
TL;DR: Conversion from MMF to EC-MPS may be associated with improvements in presence and severity of GI symptoms, particularly in patients with indigestion, diabetes, on steroids, and in patients converted between 6 and 12 months posttransplantation.
Abstract: Background Two open-label studies demonstrated that conversion from mycophenolate mofetil (MMF) to enteric-coated mycophenolate sodium (EC-MPS) significantly reduces gastrointestinal (GI) symptom burden and improves GI-specific health-related quality of life. Using a randomized design, this study evaluated changes in GI symptoms and health-related quality of life in patients converted from MMF to EC-MPS versus patients who continued with MMF-based treatment. Methods In this 4-week, multicenter, randomized, prospective, double-blind, parallel-group trial, renal transplant recipients with GI symptoms receiving MMF plus a calcineurin inhibitor ± corticosteroids were randomized to an equimolar dose of EC-MPS+MMF placebo or continue on their MMF-based regimen+EC-MPS placebo. The primary efficacy outcome was a change from baseline in total Gastrointestinal Symptom Rating Scale score of a minimally important difference of more than or equal to 0.3. Results Three hundred ninety-six patients (EC-MPS group: n=199; MMF group: n=197) were included. A greater proportion of EC-MPS patients (62%) reached the primary efficacy outcome compared with MMF patients (55%); however, the difference was not statistically significant (P=0.15). EC-MPS patients had a significantly greater decrease in the Gastrointestinal Symptom Rating Scale indigestion syndrome dimension versus MMF patients. Within the subgroups of patients with diabetes, patients transplanted 6 to 12 months of study enrollment, and patients on steroids, a statistically significant greater proportion of EC-MPS versus MMF patients reached the primary efficacy outcome. Conclusions Conversion from MMF to EC-MPS may be associated with improvements in presence and severity of GI symptoms, particularly in patients with indigestion, diabetes, on steroids, and in patients converted between 6 and 12 months posttransplantation.

Journal ArticleDOI
TL;DR: A unifying hypothesis that increased glucose-mediated ROS leads to endothelial dysfunction as the underpinning causative event triggering accelerated micro- and macrovascular complications is explored and use of Gpx1-mimetics holds promise as a targeted antioxidant approach and an alternative adjunct therapy to reduce diabetic complications.
Abstract: Although intensive glycaemic and blood pressure control have reduced the risks of micro- and macrovascular complications, diabetes remains a major cause of cardiovascular events, end-stage renal failure, blindness and neuropathy. It is therefore imperative to understand the underlying mechanisms and to establish effective treatments to prevent, retard or reverse diabetic complications. One area of increased focus is the diabetic vascular endothelium. Hyperglycaemia triggers a cascade of events, not least an increase in reactive oxygen species (ROS) leading to enhanced oxidative stress, with its negative impact on endothelial function. In this review, we explore a unifying hypothesis that increased glucose-mediated ROS leads to endothelial dysfunction as the underpinning causative event triggering accelerated micro- and macrovascular complications. In particular, the consequences of deficiencies in the antioxidant enzyme, glutathione peroxidase, on endothelial dysfunction as a trigger of diabetic micro- and macrovascular complications, will be reviewed. Furthermore, novel antioxidant therapies will be highlighted. Specifically, use of Gpx1-mimetics holds promise as a targeted antioxidant approach and an alternative adjunct therapy to reduce diabetic complications.

Journal ArticleDOI
TL;DR: These studies suggest that inherited AGER gene polymorphisms may confer susceptibility to environmental insults, and declining circulating levels of soluble RAGE, before the development of overt diabetes, may also be predictive of clinical disease in children with high to medium risk HLA II backgrounds.
Abstract: Aims/hypothesis This group of studies examines human genetic susceptibility conferred by the receptor for advanced glycation end-products (RAGE) in type 1 diabetes and investigates how this may interact with a western environment.

Journal ArticleDOI
TL;DR: Urinary excretion of proteins modified by AGEs may be useful biomarkers of albuminuria in individuals with type 1 and type 2 diabetes, warranting prospective investigation in larger diabetic cohorts.
Abstract: Background/Aims: The formation of advanced glycation end products (AGEs) is accelerated in patients with diabetic nephropathy. The aim of this study was to ascertain if the urinary

Journal ArticleDOI
TL;DR: The simulations show that the direct interaction of vancomycin with lipid II, as opposed to initial binding to the membrane, leads most readily to the formation of a stable complex.

Journal ArticleDOI
TL;DR: In this paper, the impact of LDL accumulation associated with arterial wall biglycan using a rodent model of Type 1 diabetes was investigated using fluorescent-conjugated remnant lipoproteins.
Abstract: Aims To determine fasting and postprandial metabolism of apolipoprotein B48 (apoB48) remnant lipoproteins in subjects with Type 1 diabetes and the relationship to progressive cardiovascular disease, and to investigate the impact of remnant lipoprotein cholesterol accumulation associated with arterial wall biglycan using a rodent model of Type 1 diabetes.Methods Normolipidaemic subjects (n = 9) with long-standing Type 1 diabetes (and advanced cardiovascular disease) and seven healthy control subjects were studied. Fasting and postprandial apoB48 concentration was determined following a sequential meal challenge. A rodent model of streptozotocin-induced diabetes was used to investigate the ex vivo retention of fluorescent-conjugated remnants. Binding of remnant lipoproteins to human recombinant biglycan was assessed in vitro.Results A significantly higher concentration of fasting plasma apoB48 remnants was observed in patients with Type 1 diabetes compared with control subjects. Patients with Type 1 diabetes exhibited a greater total plasma apoB48 area under the curve (AUC) and an increased incremental AUC following a second sequential meal compared with control subjects. The arterial retention of remnants ex vivo and associated cholesterol was increased sevenfold in Type 1 diabetes rats relative to controls. Remnants were shown to bind with significant affinity to human biglycan in vitro and a further 2.3-fold increased binding capacity was observed with glycated biglycan. Remnants were shown to colocalize with both arterial biglycan and glycated matrix proteins in the Type 1 diabetes rodent model.Conclusion Impaired metabolism of remnant lipoproteins associated with enhanced binding to proteoglycans appears to contribute to the arterial cholesterol deposition in Type 1 diabetes. Our findings support the hypothesis that impaired remnant metabolism may contribute to accelerated progression of atherosclerosis in the hyperglycaemic and insulin-deficient state. © 2010 The Authors. Diabetic Medicine

Journal ArticleDOI
TL;DR: In this paper, the authors present strontium, carbon and oxygen isotope measurements from the tooth enamel of 34 adults from Noen U-Loke, an Iron Age site (c. 300BC-500AD) in the Upper Mun River Valley (UMRV), northeast Thailand.