scispace - formally typeset
Search or ask a question
Author

Mark E. Everett

Other affiliations: ASTRON, Max Planck Society
Bio: Mark E. Everett is an academic researcher from Planetary Science Institute. The author has contributed to research in topics: Planet & Exoplanet. The author has an hindex of 52, co-authored 120 publications receiving 13974 citations. Previous affiliations of Mark E. Everett include ASTRON & Max Planck Society.


Papers
More filters
Journal ArticleDOI
19 Feb 2010-Science
TL;DR: The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars, which is the region where planetary temperatures are suitable for water to exist on a planet's surface.
Abstract: The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet’s surface. During the first 6 weeks of observations, Kepler monitored 156,000 stars, and five new exoplanets with sizes between 0.37 and 1.6 Jupiter radii and orbital periods from 3.2 to 4.9 days were discovered. The density of the Neptune-sized Kepler-4b is similar to that of Neptune and GJ 436b, even though the irradiation level is 800,000 times higher. Kepler-7b is one of the lowest-density planets (~0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets.

3,663 citations

Journal ArticleDOI
Natalie M. Batalha1, Natalie M. Batalha2, Jason F. Rowe1, Stephen T. Bryson1, Thomas Barclay1, Christopher J. Burke1, Douglas A. Caldwell1, Jessie L. Christiansen1, Fergal Mullally1, Susan E. Thompson1, Timothy M. Brown3, Andrea K. Dupree4, Daniel C. Fabrycky5, Eric B. Ford6, Jonathan J. Fortney5, Ronald L. Gilliland7, Howard Isaacson8, David W. Latham4, Geoffrey W. Marcy8, Samuel N. Quinn9, Samuel N. Quinn4, Darin Ragozzine4, Avi Shporer3, William J. Borucki1, David R. Ciardi10, Thomas N. Gautier10, Michael R. Haas1, Jon M. Jenkins1, David G. Koch1, Jack J. Lissauer1, William Rapin1, Gibor Basri8, Alan P. Boss11, Lars A. Buchhave12, Joshua A. Carter4, David Charbonneau4, Joergen Christensen-Dalsgaard13, Bruce D. Clarke10, William D. Cochran14, Brice-Olivier Demory15, Jean-Michel Desert4, Edna DeVore16, Laurance R. Doyle16, Gilbert A. Esquerdo4, Mark E. Everett, Francois Fressin4, John C. Geary4, Forrest R. Girouard1, Alan Gould17, Jennifer R. Hall1, Matthew J. Holman4, Andrew W. Howard8, Steve B. Howell1, Khadeejah A. Ibrahim1, Karen Kinemuchi1, Hans Kjeldsen13, Todd C. Klaus1, Jie Li1, Philip W. Lucas18, Søren Meibom4, Robert L. Morris1, Andrej Prsa19, Elisa V. Quintana1, Dwight T. Sanderfer1, Dimitar Sasselov4, Shawn Seader1, Jeffrey C. Smith1, Jason H. Steffen20, Martin Still1, Martin C. Stumpe1, Jill Tarter16, Peter Tenenbaum1, Guillermo Torres4, Joseph D. Twicken1, Kamal Uddin1, Jeffrey Van Cleve1, Lucianne M. Walkowicz21, William F. Welsh22 
TL;DR: In this paper, the authors verified nearly 5000 periodic transit-like signals against astrophysical and instrumental false positives yielding 1108 viable new transiting planet candidates, bringing the total count up to over 2300.
Abstract: New transiting planet candidates are identified in 16 months (2009 May-2010 September) of data from the Kepler spacecraft. Nearly 5000 periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1108 viable new planet candidates, bringing the total count up to over 2300. Improved vetting metrics are employed, contributing to higher catalog reliability. Most notable is the noise-weighted robust averaging of multi-quarter photo-center offsets derived from difference image analysis that identifies likely background eclipsing binaries. Twenty-two months of photometry are used for the purpose of characterizing each of the candidates. Ephemerides (transit epoch, T_0, and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (R_P/R_★), reduced semimajor axis (d/R_★), and impact parameter (b). The largest fractional increases are seen for the smallest planet candidates (201% for candidates smaller than 2 R_⊕ compared to 53% for candidates larger than 2 R_⊕) and those at longer orbital periods (124% for candidates outside of 50 day orbits versus 86% for candidates inside of 50 day orbits). The gains are larger than expected from increasing the observing window from 13 months (Quarters 1-5) to 16 months (Quarters 1-6) even in regions of parameter space where one would have expected the previous catalogs to be complete. Analyses of planet frequencies based on previous catalogs will be affected by such incompleteness. The fraction of all planet candidate host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident. The progression toward smaller planets at longer orbital periods with each new catalog release suggests that Earth-size planets in the habitable zone are forthcoming if, indeed, such planets are abundant.

1,271 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the noise-weighted robust averaging of multi-quarter photo-center offsets derived from difference image analysis, which identifies likely background eclipsing binaries.
Abstract: New transiting planet candidates are identified in sixteen months (May 2009 - September 2010) of data from the Kepler spacecraft. Nearly five thousand periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1,091 viable new planet candidates, bringing the total count up to over 2,300. Improved vetting metrics are employed, contributing to higher catalog reliability. Most notable is the noise-weighted robust averaging of multi-quarter photo-center offsets derived from difference image analysis which identifies likely background eclipsing binaries. Twenty-two months of photometry are used for the purpose of characterizing each of the new candidates. Ephemerides (transit epoch, T_0, and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (Rp/R*), reduced semi-major axis (d/R*), and impact parameter (b). The largest fractional increases are seen for the smallest planet candidates (197% for candidates smaller than 2Re compared to 52% for candidates larger than 2Re) and those at longer orbital periods (123% for candidates outside of 50-day orbits versus 85% for candidates inside of 50-day orbits). The gains are larger than expected from increasing the observing window from thirteen months (Quarter 1-- Quarter 5) to sixteen months (Quarter 1 -- Quarter 6). This demonstrates the benefit of continued development of pipeline analysis software. The fraction of all host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident. The progression toward smaller planets at longer orbital periods with each new catalog release suggests that Earth-size planets in the Habitable Zone are forthcoming if, indeed, such planets are abundant.

1,162 citations

Journal ArticleDOI
Geoffrey W. Marcy, Howard Isaacson, Andrew W. Howard, Jason F. Rowe, Jon M. Jenkins, Stephen T. Bryson, David W. Latham, Steve B. Howell, Thomas N. Gautier, Natalie M. Batalha, Leslie A. Rogers, David R. Ciardi, Debra A. Fischer, Ronald L. Gilliland, Hans Kjeldsen, Jørgen Christensen-Dalsgaard, Daniel Huber, William J. Chaplin, Sarbani Basu, Lars A. Buchhave, Samuel N. Quinn, William J. Borucki, David G. Koch, Roger C. Hunter, Douglas A. Caldwell, Jeffrey Van Cleve, Rea Kolbl, Lauren M. Weiss, Erik A. Petigura, Sara Seager, Timothy D. Morton, John Asher Johnson, Sarah Ballard, Christopher J. Burke, William D. Cochran, Michael Endl, Phillip J. MacQueen, Mark E. Everett, Jack J. Lissauer, Eric B. Ford, Guillermo Torres, Francois Fressin, Timothy M. Brown, Jason H. Steffen, David Charbonneau, Gibor Basri, Dimitar Sasselov, Joshua N. Winn, Roberto Sanchis-Ojeda, Jessie L. Christiansen, Elisabeth R. Adams, Christopher E. Henze, Andrea K. Dupree, Daniel C. Fabrycky, Jonathan J. Fortney, Jill Tarter, Matthew J. Holman, Peter Tenenbaum, Avi Shporer, Philip W. Lucas, William F. Welsh, Jerome A. Orosz, Timothy R. Bedding, Tiago L. Campante, Guy R. Davies, Yvonne Elsworth, Rasmus Handberg, Saskia Hekker, Christoffer Karoff, Steven D. Kawaler, Mikkel N. Lund, M. Lundkvist, Travis S. Metcalfe, Andrea Miglio, V. Silva Aguirre, Dennis Stello, Timothy R. White, Alan P. Boss, Edna DeVore, Alan Gould, Andrej Prsa, Eric Agol, Thomas Barclay, Jeffrey L. Coughlin, Erik Brugamyer, Fergal Mullally, Elisa V. Quintana, Martin Still, Susan E. hompson, David Morrison, Joseph D. Twicken, Jean-Michel Desert, J. A. Carter, Justin R. Crepp, Guillaume Hébrard, Alexandre Santerne, Claire Moutou, Charlie Sobeck, Douglas Hudgins, Michael R. Haas, Paul Robertson, Jorge Lillo-Box, David Barrado 
TL;DR: In this article, the masses, sizes, and orbits of the planets orbiting 22 Kepler stars were reported, including 49 candidates detected through transits and 7 revealed by precise Doppler measurements of the host stars.
Abstract: We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities for all of the transiting planets (41 of 42 have a false-positive probability under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than 3X the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify 6 planets with densities above 5 g/cc, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than ~2 R_earth. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O).

528 citations

Journal ArticleDOI
TL;DR: In this article, the authors present multiband photometry of 185 type-Ia supernovae (SNe Ia), with over 11,500 observations acquired between 2001 and 2008 at the F. L. Whipple Observatory of Harvard-Smithsonian Center for Astrophysics (CfA).
Abstract: We present multiband photometry of 185 type-Ia supernovae (SNe Ia), with over 11,500 observations. These were acquired between 2001 and 2008 at the F. L. Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics (CfA). This sample contains the largest number of homogeneously observed and reduced nearby SNe Ia (z 0.08) published to date. It more than doubles the nearby sample, bringing SN Ia cosmology to the point where systematic uncertainties dominate. Our natural system photometry has a precision of 0.02 mag in BVRIr'i' and 0.04 mag in U for points brighter than 17.5 mag. We also estimate a systematic uncertainty of 0.03 mag in our SN Ia standard system BVRIr'i' photometry and 0.07 mag for U. Comparisons of our standard system photometry with published SN Ia light curves and comparison stars, where available for the same SN, reveal agreement at the level of a few hundredths mag in most cases. We find that 1991bg-like SNe Ia are sufficiently distinct from other SNe Ia in their color and light-curve-shape/luminosity relation that they should be treated separately in light-curve/distance fitter training samples. The CfA3 sample will contribute to the development of better light-curve/distance fitters, particularly in the few dozen cases where near-infrared photometry has been obtained and, together, can help disentangle host-galaxy reddening from intrinsic supernova color, reducing the systematic uncertainty in SN Ia distances due to dust.

508 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions.
Abstract: The combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions. By combining the WMAP data with the latest distance measurements from the baryon acoustic oscillations (BAO) in the distribution of galaxies and the Hubble constant (H0) measurement, we determine the parameters of the simplest six-parameter ΛCDM model. The power-law index of the primordial power spectrum is ns = 0.968 ± 0.012 (68% CL) for this data combination, a measurement that excludes the Harrison–Zel’dovich–Peebles spectrum by 99.5% CL. The other parameters, including those beyond the minimal set, are also consistent with, and improved from, the five-year results. We find no convincing deviations from the minimal model. The seven-year temperature power spectrum gives a better determination of the third acoustic peak, which results in a better determination of the redshift of the matter-radiation equality epoch. Notable examples of improved parameters are the total mass of neutrinos, � mν < 0.58 eV (95% CL), and the effective number of neutrino species, Neff = 4.34 +0.86 −0.88 (68% CL), which benefit from better determinations of the third peak and H0. The limit on a constant dark energy equation of state parameter from WMAP+BAO+H0, without high-redshift Type Ia supernovae, is w =− 1.10 ± 0.14 (68% CL). We detect the effect of primordial helium on the temperature power spectrum and provide a new test of big bang nucleosynthesis by measuring Yp = 0.326 ± 0.075 (68% CL). We detect, and show on the map for the first time, the tangential and radial polarization patterns around hot and cold spots of temperature fluctuations, an important test of physical processes at z = 1090 and the dominance of adiabatic scalar fluctuations. The seven-year polarization data have significantly improved: we now detect the temperature–E-mode polarization cross power spectrum at 21σ , compared with 13σ from the five-year data. With the seven-year temperature–B-mode cross power spectrum, the limit on a rotation of the polarization plane due to potential parity-violating effects has improved by 38% to Δα =− 1. 1 ± 1. 4(statistical) ± 1. 5(systematic) (68% CL). We report significant detections of the Sunyaev–Zel’dovich (SZ) effect at the locations of known clusters of galaxies. The measured SZ signal agrees well with the expected signal from the X-ray data on a cluster-by-cluster basis. However, it is a factor of 0.5–0.7 times the predictions from “universal profile” of Arnaud et al., analytical models, and hydrodynamical simulations. We find, for the first time in the SZ effect, a significant difference between the cooling-flow and non-cooling-flow clusters (or relaxed and non-relaxed clusters), which can explain some of the discrepancy. This lower amplitude is consistent with the lower-than-theoretically expected SZ power spectrum recently measured by the South Pole Telescope Collaboration.

11,309 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to reduce the uncertainty in the local value of the Hubble constant from 3.3% to 2.4%.
Abstract: We use the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to reduce the uncertainty in the local value of the Hubble constant from 3.3% to 2.4%. The bulk of this improvement comes from new near-infrared (NIR) observations of Cepheid variables in 11 host galaxies of recent type Ia supernovae (SNe Ia), more than doubling the sample of reliable SNe Ia having a Cepheid-calibrated distance to a total of 19, these in turn leverage the magnitude-redshift relation based on ∼300 SNe Ia at z < 0.15. All 19 hosts as well as the megamaser system NGC 4258 have been observed with WFC3 in the optical and NIR, thus nullifying cross-instrument zeropoint errors in the relative distance estimates from Cepheids. Other noteworthy improvements include a 33% reduction in the systematic uncertainty in the maser distance to NGC 4258, a larger sample of Cepheids in the Large Magellanic Cloud (LMC), a more robust distance to the LMC based on late-type detached eclipsing binaries (DEBs), HST observations of Cepheids in M31, and new HST-based trigonometric parallaxes for Milky Way (MW) Cepheids. We consider four geometric distance calibrations of Cepheids: (i) megamasers in NGC 4258, (ii) 8 DEBs in the LMC, (iii) 15 MW Cepheids with parallaxes measured with HST/FGS, HST/WFC3 spatial scanning and/or Hipparcos, and (iv) 2 DEBs in M31. The Hubble constant from each is 72.25 ± 2.51, 72.04 ± 2.67, 76.18 ± 2.37, and 74.50 ± 3.27 km s(−)(1) Mpc(−)(1), respectively. Our best estimate of H (0) = 73.24 ± 1.74 km s(−)(1) Mpc(−)(1) combines the anchors NGC 4258, MW, and LMC, yielding a 2.4% determination (all quoted uncertainties include fully propagated statistical and systematic components). This value is 3.4σ higher than 66.93 ± 0.62 km s(−)(1) Mpc(−)(1) predicted by ΛCDM with 3 neutrino flavors having a mass of 0.06 eV and the new Planck data, but the discrepancy reduces to 2.1σ relative to the prediction of 69.3 ± 0.7 km s(−)(1) Mpc(−)(1) based on the comparably precise combination of WMAP+ACT+SPT+BAO observations, suggesting that systematic uncertainties in CMB radiation measurements may play a role in the tension. If we take the conflict between Planck high-redshift measurements and our local determination of H (0) at face value, one plausible explanation could involve an additional source of dark radiation in the early universe in the range of ΔN (eff) ≈ 0.4–1. We anticipate further significant improvements in H (0) from upcoming parallax measurements of long-period MW Cepheids.

2,228 citations

Journal ArticleDOI
TL;DR: Modules for Experiments in Stellar Astrophysics (MESA) as discussed by the authors can now simultaneously evolve an interacting pair of differentially rotating stars undergoing transfer and loss of mass and angular momentum, greatly enhancing the prior ability to model binary evolution.
Abstract: We substantially update the capabilities of the open-source software instrument Modules for Experiments in Stellar Astrophysics (MESA). MESA can now simultaneously evolve an interacting pair of differentially rotating stars undergoing transfer and loss of mass and angular momentum, greatly enhancing the prior ability to model binary evolution. New MESA capabilities in fully coupled calculation of nuclear networks with hundreds of isotopes now allow MESA to accurately simulate advanced burning stages needed to construct supernova progenitor models. Implicit hydrodynamics with shocks can now be treated with MESA, enabling modeling of the entire massive star lifecycle, from pre-main sequence evolution to the onset of core collapse and nucleosynthesis from the resulting explosion. Coupling of the GYRE non-adiabatic pulsation instrument with MESA allows for new explorations of the instability strips for massive stars while also accelerating the astrophysical use of asteroseismology data. We improve treatment of mass accretion, giving more accurate and robust near-surface profiles. A new MESA capability to calculate weak reaction rates "on-the-fly" from input nuclear data allows better simulation of accretion induced collapse of massive white dwarfs and the fate of some massive stars. We discuss the ongoing challenge of chemical diffusion in the strongly coupled plasma regime, and exhibit improvements in MESA that now allow for the simulation of radiative levitation of heavy elements in hot stars. We close by noting that the MESA software infrastructure provides bit-for-bit consistency for all results across all the supported platforms, a profound enabling capability for accelerating MESA's development.

2,166 citations

Journal ArticleDOI
TL;DR: Scolnic et al. as discussed by the authors presented optical light curves, redshifts, and classifications for 365 spectroscopically confirmed Type Ia supernovae (SNe Ia) discovered by the Pan-STARRS1 (PS1) Medium Deep Survey.
Abstract: Author(s): Scolnic, DM; Jones, DO; Rest, A; Pan, YC; Chornock, R; Foley, RJ; Huber, ME; Kessler, R; Narayan, G; Riess, AG; Rodney, S; Berger, E; Brout, DJ; Challis, PJ; Drout, M; Finkbeiner, D; Lunnan, R; Kirshner, RP; Sanders, NE; Schlafly, E; Smartt, S; Stubbs, CW; Tonry, J; Wood-Vasey, WM; Foley, M; Hand, J; Johnson, E; Burgett, WS; Chambers, KC; Draper, PW; Hodapp, KW; Kaiser, N; Kudritzki, RP; Magnier, EA; Metcalfe, N; Bresolin, F; Gall, E; Kotak, R; McCrum, M; Smith, KW | Abstract: We present optical light curves, redshifts, and classifications for 365 spectroscopically confirmed Type Ia supernovae (SNe Ia) discovered by the Pan-STARRS1 (PS1) Medium Deep Survey. We detail improvements to the PS1 SN photometry, astrometry, and calibration that reduce the systematic uncertainties in the PS1 SN Ia distances. We combine the subset of 279 PS1 SNe Ia (0.03 l z l 0.68) with useful distance estimates of SNe Ia from the Sloan Digital Sky Survey (SDSS), SNLS, and various low-z and Hubble Space Telescope samples to form the largest combined sample of SNe Ia, consisting of a total of 1048 SNe Ia in the range of 0.01 l z l 2.3, which we call the Pantheon Sample. When combining Planck 2015 cosmic microwave background (CMB) measurements with the Pantheon SN sample, we find Wm = 0.307 ± 0.012 and w = -1.026 ± 0.041 for the wCDM model. When the SN and CMB constraints are combined with constraints from BAO and local H0 measurements, the analysis yields the most precise measurement of dark energy to date: w0 = -1.007 ± 0.089 and wa = -0.222 ± 0.407 for the w0waCDM model. Tension with a cosmological constant previously seen in an analysis of PS1 and low-z SNe has diminished after an increase of 2× in the statistics of the PS1 sample, improved calibration and photometry, and stricter light-curve quality cuts. We find that the systematic uncertainties in our measurements of dark energy are almost as large as the statistical uncertainties, primarily due to limitations of modeling the low-redshift sample. This must be addressed for future progress in using SNe Ia to measure dark energy.

2,025 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented cosmological constraints from a joint analysis of type Ia supernova (SN Ia) observations obtained by the SDSS-II and SNLS collaborations.
Abstract: Aims. We present cosmological constraints from a joint analysis of type Ia supernova (SN Ia) observations obtained by the SDSS-II and SNLS collaborations. The dataset includes several low-redshift samples (z< 0.1), all three seasons from the SDSS-II (0.05

1,939 citations