scispace - formally typeset
Search or ask a question
Author

Mark F. Bennett

Bio: Mark F. Bennett is an academic researcher from Walter and Eliza Hall Institute of Medical Research. The author has contributed to research in topics: Medicine & Trinucleotide repeat expansion. The author has an hindex of 13, co-authored 41 publications receiving 657 citations. Previous affiliations of Mark F. Bennett include University of Cincinnati & Florey Institute of Neuroscience and Mental Health.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that these improved bioinformatics tools increase the diagnostic utility of WGS to determine the genetic basis of a heterogeneous group of clinically overlapping neurogenetic disorders.
Abstract: Genomic technologies such as next-generation sequencing (NGS) are revolutionizing molecular diagnostics and clinical medicine. However, these approaches have proven inefficient at identifying pathogenic repeat expansions. Here, we apply a collection of bioinformatics tools that can be utilized to identify either known or novel expanded repeat sequences in NGS data. We performed genetic studies of a cohort of 35 individuals from 22 families with a clinical diagnosis of cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS). Analysis of whole-genome sequence (WGS) data with five independent algorithms identified a recessively inherited intronic repeat expansion [(AAGGG)exp] in the gene encoding Replication Factor C1 (RFC1). This motif, not reported in the reference sequence, localized to an Alu element and replaced the reference (AAAAG)11 short tandem repeat. Genetic analyses confirmed the pathogenic expansion in 18 of 22 CANVAS-affected families and identified a core ancestral haplotype, estimated to have arisen in Europe more than twenty-five thousand years ago. WGS of the four RFC1-negative CANVAS-affected families identified plausible variants in three, with genomic re-diagnosis of SCA3, spastic ataxia of the Charlevoix-Saguenay type, and SCA45. This study identified the genetic basis of CANVAS and demonstrated that these improved bioinformatics tools increase the diagnostic utility of WGS to determine the genetic basis of a heterogeneous group of clinically overlapping neurogenetic disorders.

116 citations

Journal ArticleDOI
TL;DR: SYNGAP1 mutations cause a generalized DEE with a distinctive syndrome combining epilepsy with eyelid myoclonia with absences and myoclonic-atonic seizures, as well as a predilection to seizures triggered by eating.
Abstract: Objective To delineate the epileptology, a key part of the SYNGAP1 phenotypic spectrum, in a large patient cohort. Methods Patients were recruited via investigators9 practices or social media. We included patients with (likely) pathogenic SYNGAP1 variants or chromosome 6p21.32 microdeletions incorporating SYNGAP1. We analyzed patients9 phenotypes using a standardized epilepsy questionnaire, medical records, EEG, MRI, and seizure videos. Results We included 57 patients (53% male, median age 8 years) with SYNGAP1 mutations (n = 53) or microdeletions (n = 4). Of the 57 patients, 56 had epilepsy: generalized in 55, with focal seizures in 7 and infantile spasms in 1. Median seizure onset age was 2 years. A novel type of drop attack was identified comprising eyelid myoclonia evolving to a myoclonic-atonic (n = 5) or atonic (n = 8) seizure. Seizure types included eyelid myoclonia with absences (65%), myoclonic seizures (34%), atypical (20%) and typical (18%) absences, and atonic seizures (14%), triggered by eating in 25%. Developmental delay preceded seizure onset in 54 of 56 (96%) patients for whom early developmental history was available. Developmental plateauing or regression occurred with seizures in 56 in the context of a developmental and epileptic encephalopathy (DEE). Fifty-five of 57 patients had intellectual disability, which was moderate to severe in 50. Other common features included behavioral problems (73%); high pain threshold (72%); eating problems, including oral aversion (68%); hypotonia (67%); sleeping problems (62%); autism spectrum disorder (54%); and ataxia or gait abnormalities (51%). Conclusions SYNGAP1 mutations cause a generalized DEE with a distinctive syndrome combining epilepsy with eyelid myoclonia with absences and myoclonic-atonic seizures, as well as a predilection to seizures triggered by eating.

105 citations

Journal ArticleDOI
TL;DR: Mixed intronic TTTTA/TTTCA expansions of various lengths in the first intron of MARCH6 are described as a cause of FAME3 and revealed that expansions exhibit an unexpectedly high somatic instability that can ultimately result in genomic rearrangements.
Abstract: Familial Adult Myoclonic Epilepsy (FAME) is a genetically heterogeneous disorder characterized by cortical tremor and seizures. Intronic TTTTA/TTTCA repeat expansions in SAMD12 (FAME1) are the main cause of FAME in Asia. Using genome sequencing and repeat-primed PCR, we identify another site of this repeat expansion, in MARCH6 (FAME3) in four European families. Analysis of single DNA molecules with nanopore sequencing and molecular combing show that expansions range from 3.3 to 14 kb on average. However, we observe considerable variability in expansion length and structure, supporting the existence of multiple expansion configurations in blood cells and fibroblasts of the same individual. Moreover, the largest expansions are associated with micro-rearrangements occurring near the expansion in 20% of cells. This study provides further evidence that FAME is caused by intronic TTTTA/TTTCA expansions in distinct genes and reveals that expansions exhibit an unexpectedly high somatic instability that can ultimately result in genomic rearrangements.

92 citations

Journal ArticleDOI
TL;DR: It is demonstrated that exSTRa can be effectively utilized as a screening tool for detecting repeat expansions in WES and WGS data, although the best performance would be produced by consensus calling, wherein at least two out of the four currently available screening methods call an expansion.
Abstract: Repeat expansions cause more than 30 inherited disorders, predominantly neurogenetic. These can present with overlapping clinical phenotypes, making molecular diagnosis challenging. Single-gene or small-panel PCR-based methods can help to identify the precise genetic cause, but they can be slow and costly and often yield no result. Researchers are increasingly performing genomic analysis via whole-exome and whole-genome sequencing (WES and WGS) to diagnose genetic disorders. However, until recently, analysis protocols could not identify repeat expansions in these datasets. We developed exSTRa (expanded short tandem repeat algorithm), a method that uses either WES or WGS to identify repeat expansions. Performance of exSTRa was assessed in a simulation study. In addition, four retrospective cohorts of individuals with eleven different known repeat-expansion disorders were analyzed with exSTRa. We assessed results by comparing the findings to known disease status. Performance was also compared to three other analysis methods (ExpansionHunter, STRetch, and TREDPARSE), which were developed specifically for WGS data. Expansions in the assessed STR loci were successfully identified in WES and WGS datasets by all four methods with high specificity and sensitivity. Overall, exSTRa demonstrated more robust and superior performance for WES data than did the other three methods. We demonstrate that exSTRa can be effectively utilized as a screening tool for detecting repeat expansions in WES and WGS data, although the best performance would be produced by consensus calling, wherein at least two out of the four currently available screening methods call an expansion.

89 citations

Journal ArticleDOI
TL;DR: How to assess short-read data for evidence of expansions by reviewing all four analysis methods with accompanying software and outlining their strengths and weaknesses is detailed.
Abstract: Short tandem repeats (STRs), also known as microsatellites, are commonly defined as consisting of tandemly repeated nucleotide motifs of 2-6 base pairs in length. STRs appear throughout the human genome, and about 239,000 are documented in the Simple Repeats Track available from the UCSC (University of California, Santa Cruz) genome browser. STRs vary in size, producing highly polymorphic markers commonly used as genetic markers. A small fraction of STRs (about 30 loci) have been associated with human disease whereby one or both alleles exceed an STR-specific threshold in size, leading to disease. Detection of repeat expansions is currently performed with polymerase chain reaction-based assays or with Southern blots for large expansions. The tests are expensive and time-consuming and are not always conclusive, leading to lengthy diagnostic journeys for patients, potentially including missed diagnoses. The advent of whole exome and whole genome sequencing has identified the genetic cause of many genetic disorders; however, analysis pipelines are focused primarily on the detection of short nucleotide variations and short insertions and deletions (indels). Until recently, repeat expansions, with the exception of the smallest expansion (SCA6), were not detectable in next-generation short-read sequencing datasets and would have been ignored in most analyses. In the last two years, four analysis methods with accompanying software (ExpansionHunter, exSTRa, STRetch, and TREDPARSE) have been released. Although a comprehensive comparative analysis of the performance of these methods across all known repeat expansions is still lacking, it is clear that these methods are a valuable addition to any existing analysis pipeline. Here, we detail how to assess short-read data for evidence of expansions, reviewing all four methods and outlining their strengths and weaknesses. Implementation of these methods should lead to increased diagnostic yield of repeat expansion disorders for known STR loci and has the potential to detect novel repeat expansions.

84 citations


Cited by
More filters
01 Jan 2011
TL;DR: The sheer volume and scope of data posed by this flood of data pose a significant challenge to the development of efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

2,187 citations

01 Mar 2017
TL;DR: Recent advances in understanding of mTOR function, regulation, and importance in mammalian physiology are reviewed and how the mTOR-signaling network contributes to human disease is highlighted.
Abstract: The mechanistic target of rapamycin (mTOR) coordinates eukaryotic cell growth and metabolism with environmental inputs, including nutrients and growth factors. Extensive research over the past two decades has established a central role for mTOR in regulating many fundamental cell processes, from protein synthesis to autophagy, and deregulated mTOR signaling is implicated in the progression of cancer and diabetes, as well as the aging process. Here, we review recent advances in our understanding of mTOR function, regulation, and importance in mammalian physiology. We also highlight how the mTOR signaling network contributes to human disease and discuss the current and future prospects for therapeutically targeting mTOR in the clinic.

2,014 citations

Journal ArticleDOI
TL;DR: In this paper, Belitz et al. presented a survey of the state-of-the-art in condensed-matter physics, focusing on the following papers: Condensed Matter Physics (Theoretical) J. IGNACIO CIRAC, Max-Planck-Institut für Quantenoptik Quantum Information RAYMOND E. GOLDSTEIN, University of Cambridge Biological Physics ARTHUR F. HEBARD and DAVID D. KAMIEN.
Abstract: Associate DIETRICH BELITZ, University of Oregon Editors: Condensed Matter Physics (Theoretical) J. IGNACIO CIRAC, Max-Planck-Institut für Quantenoptik Quantum Information RAYMOND E. GOLDSTEIN, University of Cambridge Biological Physics ARTHUR F. HEBARD, University of Florida Condensed Matter Physics (Experimental) RANDALL D. KAMIEN, University of Pennsylvania Soft Condensed Matter DANIEL KLEPPNER, Massachusetts Institute of Technology Atomic, Molecular, and Optical Physics (Experimental) PAUL G. LANGACKER, Institute for Advanced Study, Princeton University Particle Physics (Theoretical) VERA LÜTH, Stanford University Particle Physics (Experimental) DAVID D. MEYERHOFER, University of Rochester Physics of Plasmas and Matter at High-Energy Density WITOLD NAZAREWICZ, University of Tennessee, Oak Ridge National Laboratory Nuclear Physics JOHN H. SCHWARZ, California Institute of Technology Mathematical Physics FRIEDRICH-KARL THIELEMANN, Universität Basel Astrophysics Senior Assistant Editor: DEBBIE BRODBAR, APS Editorial Office American Physical Society

774 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott2, Richard J. Abbott1, T. D. Abbott3  +1064 moreInstitutions (117)
TL;DR: This work performs a search for the isotropic stochastic gravitational-wave background using data from Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run, and constrain the dimensionless energy density of gravitational waves to be Ω_{0}<1.7×10^{-7} with 95% confidence.
Abstract: A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced Laser Interferometer Gravitational Wave Observatory’s (aLIGO) first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be Ω 0 < 1.7 × 10 − 7 with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20–86 Hz). This is a factor of ∼ 33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background.

280 citations

Journal ArticleDOI
B. P. Abbott, Richard J. Abbott, T. D. Abbott, Sheelu Abraham  +1130 moreInstitutions (5)
TL;DR: In this article, a cross-correlation analysis on the data from Advanced LIGO's second observing run (O2) is presented, which combines with the results of the first observing run, and upper limits on the normalized energy density in gravitational waves at the 95% credible level of ΩGW < 6.0 × 10−8 at 25 Hz for a background of compact binary coalescences.
Abstract: The stochastic gravitational-wave background is a superposition of sources that are either too weak or too numerous to detect individually. In this study, we present the results from a cross-correlation analysis on data from Advanced LIGO’s second observing run (O2), which we combine with the results of the first observing run (O1). We do not find evidence for a stochastic background, so we place upper limits on the normalized energy density in gravitational waves at the 95% credible level of ΩGW < 6.0 × 10−8 for a frequency-independent (flat) background and ΩGW < 4.8 × 10−8 at 25 Hz for a background of compact binary coalescences. The upper limit improves over the O1 result by a factor of 2.8. Additionally, we place upper limits on the energy density in an isotropic background of scalar- and vector-polarized gravitational waves, and we discuss the implication of these results for models of compact binaries and cosmic string backgrounds. Finally, we present a conservative estimate of the correlated broadband noise due to the magnetic Schumann resonances in O2, based on magnetometer measurements at both the LIGO Hanford and LIGO Livingston observatories. We find that correlated noise is well below the O2 sensitivity.

249 citations