scispace - formally typeset
Search or ask a question
Author

Mark Gerstein

Bio: Mark Gerstein is an academic researcher from Yale University. The author has contributed to research in topics: Genome & Gene. The author has an hindex of 168, co-authored 751 publications receiving 149578 citations. Previous affiliations of Mark Gerstein include Rutgers University & Structural Genomics Consortium.
Topics: Genome, Gene, Human genome, Genomics, Pseudogene


Papers
More filters
Journal ArticleDOI
TL;DR: This work does 3D structure-based docking on ∼10,000 SNVs modifying known protein-drug complexes to construct a pseudo gold standard and uses this augmented set of BAs to train a statistical model combining structure, ligand and sequence features and illustrates how it can be applied to millions of SNVs.

7 citations

Posted ContentDOI
16 Dec 2020-bioRxiv
TL;DR: This resource enables reliable graph-based genotyping from short reads of up to 50,340 SVs, resulting in the identification of 1,525 expression quantitative trait loci (SV-eQTLs) as well as SV candidates for adaptive selection within the human population.
Abstract: Long-read and strand-specific sequencing technologies together facilitate the de novo assembly of high-quality haplotype-resolved human genomes without parent–child trio data. We present 64 assembled haplotypes from 32 diverse human genomes. These highly contiguous haplotype assemblies (average contig N50: 26 Mbp) integrate all forms of genetic variation across even complex loci such as the major histocompatibility complex. We focus on 107,590 structural variants (SVs), of which 68% are inaccessible by short-read sequencing. We identify new SV hotspots (spanning megabases of gene-rich sequence), characterize 130 of the most active mobile element source elements, and find that 63% of all SVs arise by homology-mediated mechanisms—a twofold increase from previous studies. Our resource now enables reliable graph-based genotyping from short reads of up to 50,340 SVs, resulting in the identification of 1,525 expression quantitative trait loci (SV-eQTLs) as well as SV candidates for adaptive selection within the human population.

7 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe issues related to surveying proteomes in terms of structural parts, including methods for fold assignment and formats for comparisons (eg top-10 lists and whole-genome trees), and show how biases in the databases and in sampling can affect these surveys.
Abstract: The sequencing of complete genomes provides us with a global view of all the proteins in an organism. Proteomic analysis can be done on a purely sequence-based level, with a focus on finding homologues and grouping them into families and clusters of orthologs. However, incorporating protein structure into this analysis provides valuable simplification; it allows one to collect together very distantly related sequences, thus condensing the proteome into a minimal number of 'parts.' We describe issues related to surveying proteomes in terms of structural parts, including methods for fold assignment and formats for comparisons (eg top-10 lists and whole-genome trees), and show how biases in the databases and in sampling can affect these surveys. We illustrate our main points through a case study on the unique protein properties evident in many thermophile genomes (eg more salt bridges). Finally, we discuss metabolic pathways as an even greater simplification of genomes. In comparison to folds these allow the organization of many more genes into coherent systems, yet can nevertheless be understood in many of the same terms.

7 citations

Posted ContentDOI
01 Jan 2021

7 citations

Journal ArticleDOI
TL;DR: A computational method to predict cell cycle regulated genes based on their genomic features – transcription factor binding and motif profiles shows high accuracy and suggests that the periodical pattern of cell cycle genes is largely coded in their promoter regions.
Abstract: Background Time-course microarray experiments have been widely used to identify cell cycle regulated genes. However, the method is not effective for lowly expressed genes and is sensitive to experimental conditions. To complement microarray experiments, we propose a computational method to predict cell cycle regulated genes based on their genomic features – transcription factor binding and motif profiles.

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Abstract: The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSIBLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.

70,111 citations

Journal ArticleDOI
TL;DR: The goals of the PDB are described, the systems in place for data deposition and access, how to obtain further information and plans for the future development of the resource are described.
Abstract: The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and near-term plans for the future development of the resource.

34,239 citations

Journal ArticleDOI
TL;DR: The Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure outperforms other aligners by a factor of >50 in mapping speed.
Abstract: Motivation Accurate alignment of high-throughput RNA-seq data is a challenging and yet unsolved problem because of the non-contiguous transcript structure, relatively short read lengths and constantly increasing throughput of the sequencing technologies. Currently available RNA-seq aligners suffer from high mapping error rates, low mapping speed, read length limitation and mapping biases. Results To align our large (>80 billon reads) ENCODE Transcriptome RNA-seq dataset, we developed the Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure. STAR outperforms other aligners by a factor of >50 in mapping speed, aligning to the human genome 550 million 2 × 76 bp paired-end reads per hour on a modest 12-core server, while at the same time improving alignment sensitivity and precision. In addition to unbiased de novo detection of canonical junctions, STAR can discover non-canonical splices and chimeric (fusion) transcripts, and is also capable of mapping full-length RNA sequences. Using Roche 454 sequencing of reverse transcription polymerase chain reaction amplicons, we experimentally validated 1960 novel intergenic splice junctions with an 80-90% success rate, corroborating the high precision of the STAR mapping strategy. Availability and implementation STAR is implemented as a standalone C++ code. STAR is free open source software distributed under GPLv3 license and can be downloaded from http://code.google.com/p/rna-star/.

30,684 citations

Journal ArticleDOI
TL;DR: Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches and can be used simultaneously to achieve even greater alignment speeds.
Abstract: Bowtie is an ultrafast, memory-efficient alignment program for aligning short DNA sequence reads to large genomes. For the human genome, Burrows-Wheeler indexing allows Bowtie to align more than 25 million reads per CPU hour with a memory footprint of approximately 1.3 gigabytes. Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches. Multiple processor cores can be used simultaneously to achieve even greater alignment speeds. Bowtie is open source http://bowtie.cbcb.umd.edu.

20,335 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations