scispace - formally typeset
Search or ask a question
Author

Mark Gerstein

Bio: Mark Gerstein is an academic researcher from Yale University. The author has contributed to research in topics: Genome & Gene. The author has an hindex of 168, co-authored 751 publications receiving 149578 citations. Previous affiliations of Mark Gerstein include Rutgers University & Structural Genomics Consortium.
Topics: Genome, Gene, Human genome, Genomics, Pseudogene


Papers
More filters
Journal ArticleDOI
TL;DR: A genome-scale specificity and interaction map for yeast SH3 domain-containing proteins reveal how family members show selective binding to target proteins and predicts the dynamic localization of new candidate endocytosis proteins.
Abstract: SH3 domains are peptide recognition modules that mediate the assembly of diverse biological complexes. We scanned billions of phage-displayed peptides to map the binding specificities of the SH3 domain family in the budding yeast, Saccharomyces cerevisiae. Although most of the SH3 domains fall into the canonical classes I and II, each domain utilizes distinct features of its cognate ligands to achieve binding selectivity. Furthermore, we uncovered several SH3 domains with specificity profiles that clearly deviate from the two canonical classes. In conjunction with phage display, we used yeast twohybrid and peptide array screening to independently identify SH3 domain binding partners. The results from the three complementary techniques were integrated using a Bayesian algorithm to generate a high-confidence yeast SH3 domain interaction map. The interaction map was enriched for proteins involved in endocytosis, revealing a set of SH3-mediated interactions that underlie formation of protein complexes essential to this biological pathway. We used the SH3 domain interaction network to predict the dynamic localization of several previously uncharacterized endocytic proteins, and our analysis suggests a novel role for the SH3 domains of Lsb3p and Lsb4p as hubs that recruit and assemble several endocytic complexes.

191 citations

Journal ArticleDOI
TL;DR: The transcribed processed pseudogene (TPΨg), which is disabled but nonetheless transcribed, is identified and is unlike other PΨgs and processed genes in the following ways: (i) they do not show a significant tendency to either deposit on or originate from the X chromosome; (ii) only 5% of human TPΩgs have potential orthologs in mouse; this latter finding indicates that the vast majority of TPάgs is lineage specific.
Abstract: Pseudogenes, in the case of protein-coding genes, are gene copies that have lost the ability to code for a protein; they are typically identified through annotation of disabled, decayed or incomplete proteincoding sequences. Processed pseudogenes (PCgs) are made through mRNA retrotransposition. There is overwhelming genomic evidence for thousands of human PCgs and also dozens of human processed genes that comprise complete retrotransposed copies of other genes. Here, we survey for an intermediate entity, the transcribed processed pseudogene (TPCg), which is disabled but nonetheless transcribed. TPCgs may affect expression of paralogous genes, as observed in the case of the mouse makorin1-p1 TPCg. To elucidate their role, we identified human TPCgs by mapping expressed sequences onto PCgs and, reciprocally, extracting TPCgs from known mRNAs. We consider only those PCgs that are homologous to either non-mammalian eukaryotic proteins or protein domains of known structure, and require detection of identical coding-sequence disablements in both the expressed and genomic sequences. Oligonucleotide microarray data provide further expression verification. Overall, we find 166– 233 TPCg s( � 4–6% of PCgs). Proteins/transcripts with the highest numbers of homologous TPCgs generally have many homologous PCgs and are abundantly expressed. TPCgs are significantly overrepresented near both the 5 0 and 3 0 ends of genes; this suggests that TPCgs can be formed through gene– promoter co-option, or intrusion into untranslated regions. However, roughly half of the TPCgs are located away from genes in the intergenic DNA and thus may be co-opting cryptic promoters of undesignated origin. Furthermore, TPCgs are unlike other PCgs and processed genes in the following ways: (i) they do not show a significant tendency to either deposit on or originate from the X chromosome; (ii) only 5% of human TPCgs have potential orthologs in mouse. This latter finding indicates that the vast majority of TPCgs is lineage specific. This is likely linked to well-documented extensive lineage-specific SINE/ LINE activity. The list of TPCgs is available at:

191 citations

Journal ArticleDOI
TL;DR: The main populations and clusters of pseudogenes on chromosomes 21 and 22 are determined, and it is found that chromosome 22 pseudogene population is dominated by immunoglobulin segments, which have a greater rate of disablement per amino acid than the other pseudogene populations and are also substantially more diverged.
Abstract: Pseudogenes are disabled copies of genes that do not produce a functional, full-length copy of a protein (Mighell et al. 2000; Vanin 1985). They are of two types: First, processed pseudogenes result from reverse transcription of messenger RNA transcripts followed by reintegration into genomic DNA (presumably in germ-line cells) and subsequent degradation with disablements (premature stop codons and frameshifts) (Vanin 1985). Second, nonprocessed pseudogenes result from duplication of a gene, followed by an initial disablement if the duplicated copy is not “useful” (Mighell et al. 2000). These then also accumulate further coding disablements. The extent of the pseudogene population in the human genome is unclear. Estimates for the number of human genes range from ∼22,000 to ∼75,000 (Crollius et al. 2000; Ewing and Green 2000; Lander et al. 2001; Venter et al. 2001; Wright et al. 2001). From previous reports, it is thought that up to 22% of these gene predictions may be pseudogenic (Lander et al. 2001; Yeh et al. 2001). It is important to characterize the human processed and nonprocessed pseudogene populations as their existence interferes with gene identification and prediction (particularly nonprocessed pseudogenes or individual pseudogenic exons). They are also an important resource for the study of the evolution of protein families (see, e.g., studies on the human olfactory receptor subgenome [e.g. Glusman et al. 2001]). Here, we have performed a detailed analysis of the pseudogene populations of human chromosomes 21 and 22, which have been sequenced contiguously to high quality. This is similar in spirit to previous surveys we have performed on pseudogenes and other genomic features in other organisms (Harrison et al. 2001; Gerstein 1997, 1998; Hegyi and Gerstein 1999). We have examined the main populations and clusters of pseudogenes for the two chromosomes. Patterns of distribution of both nonprocessed and processed pseudogenes indicate the existence of pseudogenic hot-spots in the human genome. In addition, we have estimated the total numbers and proportions of processed and nonprocessed pseudogenes in the whole human genome.

190 citations

Journal ArticleDOI
TL;DR: This work introduces an approach that employs correlation and regression to relate multiple, continuously varying factors defining an environment to the extent of particular microbial pathways present in a geographic site, and defines an ensemble of weighted pathways that maximally covaries with a combination of environmental variables (many-to-many).
Abstract: Recently, approaches have been developed to sample the genetic content of heterogeneous environments (metagenomics). However, by what means these sequences link distinct environmental conditions with specific biological processes is not well understood. Thus, a major challenge is how the usage of particular pathways and subnetworks reflects the adaptation of microbial communities across environments and habitats—i.e., how network dynamics relates to environmental features. Previous research has treated environments as discrete, somewhat simplified classes (e.g., terrestrial vs. marine), and searched for obvious metabolic differences among them (i.e., treating the analysis as a typical classification problem). However, environmental differences result from combinations of many factors, which often vary only slightly. Therefore, we introduce an approach that employs correlation and regression to relate multiple, continuously varying factors defining an environment to the extent of particular microbial pathways present in a geographic site. Moreover, rather than looking only at individual correlations (one-to-one), we adapted canonical correlation analysis and related techniques to define an ensemble of weighted pathways that maximally covaries with a combination of environmental variables (many-to-many), which we term a metabolic footprint. Applied to available aquatic datasets, we identified footprints predictive of their environment that can potentially be used as biosensors. For example, we show a strong multivariate correlation between the energy-conversion strategies of a community and multiple environmental gradients (e.g., temperature). Moreover, we identified covariation in amino acid transport and cofactor synthesis, suggesting that limiting amounts of cofactor can (partially) explain increased import of amino acids in nutrient-limited conditions.

189 citations

Journal ArticleDOI
TL;DR: This work proposes a new method for determining the target genes of transcriptional enhancers in specific cells and tissues, and discovers three major co-regulation modes of enhancers and finds defense-related genes often simultaneously regulated by multiple enhancers bound by different transcription factors.
Abstract: We propose a new method for determining the target genes of transcriptional enhancers in specific cells and tissues. It combines global trends across many samples and sample-specific information, and considers the joint effect of multiple enhancers. Our method outperforms existing methods when predicting the target genes of enhancers in unseen samples, as evaluated by independent experimental data. Requiring few types of input data, we are able to apply our method to reconstruct the enhancer-target networks in 935 samples of human primary cells, tissues and cell lines, which constitute by far the largest set of enhancer-target networks. The similarity of these networks from different samples closely follows their cell and tissue lineages. We discover three major co-regulation modes of enhancers and find defense-related genes often simultaneously regulated by multiple enhancers bound by different transcription factors. We also identify differentially methylated enhancers in hepatocellular carcinoma (HCC) and experimentally confirm their altered regulation of HCC-related genes.

189 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Abstract: The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSIBLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.

70,111 citations

Journal ArticleDOI
TL;DR: The goals of the PDB are described, the systems in place for data deposition and access, how to obtain further information and plans for the future development of the resource are described.
Abstract: The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and near-term plans for the future development of the resource.

34,239 citations

Journal ArticleDOI
TL;DR: The Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure outperforms other aligners by a factor of >50 in mapping speed.
Abstract: Motivation Accurate alignment of high-throughput RNA-seq data is a challenging and yet unsolved problem because of the non-contiguous transcript structure, relatively short read lengths and constantly increasing throughput of the sequencing technologies. Currently available RNA-seq aligners suffer from high mapping error rates, low mapping speed, read length limitation and mapping biases. Results To align our large (>80 billon reads) ENCODE Transcriptome RNA-seq dataset, we developed the Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure. STAR outperforms other aligners by a factor of >50 in mapping speed, aligning to the human genome 550 million 2 × 76 bp paired-end reads per hour on a modest 12-core server, while at the same time improving alignment sensitivity and precision. In addition to unbiased de novo detection of canonical junctions, STAR can discover non-canonical splices and chimeric (fusion) transcripts, and is also capable of mapping full-length RNA sequences. Using Roche 454 sequencing of reverse transcription polymerase chain reaction amplicons, we experimentally validated 1960 novel intergenic splice junctions with an 80-90% success rate, corroborating the high precision of the STAR mapping strategy. Availability and implementation STAR is implemented as a standalone C++ code. STAR is free open source software distributed under GPLv3 license and can be downloaded from http://code.google.com/p/rna-star/.

30,684 citations

Journal ArticleDOI
TL;DR: Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches and can be used simultaneously to achieve even greater alignment speeds.
Abstract: Bowtie is an ultrafast, memory-efficient alignment program for aligning short DNA sequence reads to large genomes. For the human genome, Burrows-Wheeler indexing allows Bowtie to align more than 25 million reads per CPU hour with a memory footprint of approximately 1.3 gigabytes. Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches. Multiple processor cores can be used simultaneously to achieve even greater alignment speeds. Bowtie is open source http://bowtie.cbcb.umd.edu.

20,335 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations