scispace - formally typeset
Search or ask a question
Author

Mark Gerstein

Bio: Mark Gerstein is an academic researcher from Yale University. The author has contributed to research in topics: Genome & Gene. The author has an hindex of 168, co-authored 751 publications receiving 149578 citations. Previous affiliations of Mark Gerstein include Rutgers University & Structural Genomics Consortium.
Topics: Genome, Gene, Human genome, Genomics, Pseudogene


Papers
More filters
Journal ArticleDOI
TL;DR: This work merges many of the available yeast protein-abundance datasets, using the resulting larger 'meta-dataset' to find correlations between protein and mRNA expression, both globally and within smaller categories.
Abstract: Attempts to correlate protein abundance with mRNA expression levels have had variable success. We review the results of these comparisons, focusing on yeast. In the process, we survey experimental techniques for determining protein abundance, principally two-dimensional gel electrophoresis and mass-spectrometry. We also merge many of the available yeast protein-abundance datasets, using the resulting larger 'meta-dataset' to find correlations between protein and mRNA expression, both globally and within smaller categories.

1,812 citations

Journal ArticleDOI
TL;DR: This work discusses how ChIP quality, assessed in these ways, affects different uses of ChIP-seq data and develops a set of working standards and guidelines for ChIP experiments that are updated routinely.
Abstract: Chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-seq) has become a valuable and widely used approach for mapping the genomic location of transcription-factor binding and histone modifications in living cells. Despite its widespread use, there are considerable differences in how these experiments are conducted, how the results are scored and evaluated for quality, and how the data and metadata are archived for public use. These practices affect the quality and utility of any global ChIP experiment. Through our experience in performing ChIP-seq experiments, the ENCODE and modENCODE consortia have developed a set of working standards and guidelines for ChIP experiments that are updated routinely. The current guidelines address antibody validation, experimental replication, sequencing depth, data and metadata reporting, and data quality assessment. We discuss how ChIP quality, assessed in these ways, affects different uses of ChIP-seq data. All data sets used in the analysis have been deposited for public viewing and downloading at the ENCODE (http://encodeproject.org/ENCODE/) and modENCODE (http://www.modencode.org/) portals.

1,801 citations

01 Nov 2015
TL;DR: A comprehensive molecular analysis of 333 primary prostate carcinomas revealed a molecular taxonomy in which 74% of these tumors fell into one of seven subtypes defined by specific gene fusions (ERG, ETV1/4, and FLI1) or mutations (SPOP, FOXA1, and IDH1).
Abstract: There is substantial heterogeneity among primary prostate cancers, evident in the spectrum of molecular abnormalities and its variable clinical course. As part of The Cancer Genome Atlas (TCGA), we present a comprehensive molecular analysis of 333 primary prostate carcinomas. Our results revealed a molecular taxonomy in which 74% of these tumors fell into one of seven subtypes defined by specific gene fusions (ERG, ETV1/4, and FLI1) or mutations (SPOP, FOXA1, and IDH1). Epigenetic profiles showed substantial heterogeneity, including an IDH1 mutant subset with a methylator phenotype. Androgen receptor (AR) activity varied widely and in a subtype-specific manner, with SPOP and FOXA1 mutant tumors having the highest levels of AR-induced transcripts. 25% of the prostate cancers had a presumed actionable lesion in the PI3K or MAPK signaling pathways, and DNA repair genes were inactivated in 19%. Our analysis reveals molecular heterogeneity among primary prostate cancers, as well as potentially actionable molecular defects.

1,794 citations

Journal ArticleDOI
23 Jan 2004-Science
TL;DR: A large fraction of the Caenorhabditis elegans interactome network is mapped, starting with a subset of metazoan-specific proteins, and more than 4000 interactions were identified from high-throughput, yeast two-hybrid screens.
Abstract: To initiate studies on how protein-protein interaction (or "interactome") networks relate to multicellular functions, we have mapped a large fraction of the Caenorhabditis elegans interactome network. Starting with a subset of metazoan-specific proteins, more than 4000 interactions were identified from high-throughput, yeast two-hybrid (HT=Y2H) screens. Independent coaffinity purification assays experimentally validated the overall quality of this Y2H data set. Together with already described Y2H interactions and interologs predicted in silico, the current version of the Worm Interactome (WI5) map contains approximately 5500 interactions. Topological and biological features of this interactome network, as well as its integration with phenome and transcriptome data sets, lead to numerous biological hypotheses.

1,733 citations

Journal ArticleDOI
Peter J. Campbell1, Gad Getz2, Jan O. Korbel3, Joshua M. Stuart4  +1329 moreInstitutions (238)
06 Feb 2020-Nature
TL;DR: The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.
Abstract: Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1,2,3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10,11,12,13,14,15,16,17,18.

1,600 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Abstract: The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSIBLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.

70,111 citations

Journal ArticleDOI
TL;DR: The goals of the PDB are described, the systems in place for data deposition and access, how to obtain further information and plans for the future development of the resource are described.
Abstract: The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and near-term plans for the future development of the resource.

34,239 citations

Journal ArticleDOI
TL;DR: The Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure outperforms other aligners by a factor of >50 in mapping speed.
Abstract: Motivation Accurate alignment of high-throughput RNA-seq data is a challenging and yet unsolved problem because of the non-contiguous transcript structure, relatively short read lengths and constantly increasing throughput of the sequencing technologies. Currently available RNA-seq aligners suffer from high mapping error rates, low mapping speed, read length limitation and mapping biases. Results To align our large (>80 billon reads) ENCODE Transcriptome RNA-seq dataset, we developed the Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure. STAR outperforms other aligners by a factor of >50 in mapping speed, aligning to the human genome 550 million 2 × 76 bp paired-end reads per hour on a modest 12-core server, while at the same time improving alignment sensitivity and precision. In addition to unbiased de novo detection of canonical junctions, STAR can discover non-canonical splices and chimeric (fusion) transcripts, and is also capable of mapping full-length RNA sequences. Using Roche 454 sequencing of reverse transcription polymerase chain reaction amplicons, we experimentally validated 1960 novel intergenic splice junctions with an 80-90% success rate, corroborating the high precision of the STAR mapping strategy. Availability and implementation STAR is implemented as a standalone C++ code. STAR is free open source software distributed under GPLv3 license and can be downloaded from http://code.google.com/p/rna-star/.

30,684 citations

Journal ArticleDOI
TL;DR: Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches and can be used simultaneously to achieve even greater alignment speeds.
Abstract: Bowtie is an ultrafast, memory-efficient alignment program for aligning short DNA sequence reads to large genomes. For the human genome, Burrows-Wheeler indexing allows Bowtie to align more than 25 million reads per CPU hour with a memory footprint of approximately 1.3 gigabytes. Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches. Multiple processor cores can be used simultaneously to achieve even greater alignment speeds. Bowtie is open source http://bowtie.cbcb.umd.edu.

20,335 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations