scispace - formally typeset
Search or ask a question
Author

Mark Gerstein

Bio: Mark Gerstein is an academic researcher from Yale University. The author has contributed to research in topics: Genome & Gene. The author has an hindex of 168, co-authored 751 publications receiving 149578 citations. Previous affiliations of Mark Gerstein include Rutgers University & Structural Genomics Consortium.
Topics: Genome, Gene, Human genome, Genomics, Pseudogene


Papers
More filters
Journal ArticleDOI
Lu Yong Wang1, Alexej Abyzov, Jan O. Korbel1, Michael Snyder1, Mark Gerstein1 
TL;DR: This paper proposes a nonparametric method that achieves robust discontinuity-preserving smoothing, thus accurately segmenting chromosomes into regions of duplication and deletion and can be extended to segmenting the signal resulting from the depth-of-coverage of mapped reads from next-generation sequencing.
Abstract: Genome structural variation includes segmental duplications, deletions, and other rearrangements, and array-based comparative genomic hybridization (array-CGH) is a popular technology for determining this. Drawing relevant conclusions from array-CGH requires computational methods for partitioning the chromosome into segments of elevated, reduced, or unchanged copy number. Several approaches have been described, most of which attempt to explicitly model the underlying distribution of data based on particular assumptions. Often, they optimize likelihood functions for estimating model parameters, by expectation maximization or related approaches; however, this requires good parameter initialization through prespecifying the number of segments. Moreover, convergence is difficult to achieve, since many parameters are required to characterize an experiment. To overcome these limitations, we propose a nonparametric method without a global criterion to be optimized. Our method involves mean-shift-based (MSB) procedures; it considers the observed array-CGH signal as sampling from a probabilitydensity function, uses a kernel-based approach to estimate local gradients for this function, and iteratively follows them to determine local modes of the signal. Overall, our method achieves robust discontinuity-preserving smoothing, thus accurately segmenting chromosomes into regions of duplication and deletion. It does not require the number of segments as input, nor does its convergence depend on this. We successfully applied our method to both simulated data and array-CGH experiments on glioblastoma and adenocarcinoma. We show that it performs at least as well as, and often better than, 10 previously published algorithms. Finally, we show that our approach can be extended to segmenting the signal resulting from the depth-of-coverage of mapped reads from next-generation sequencing.

40 citations

Journal ArticleDOI
TL;DR: 115 SNPs in GPCRs from dbSNP that are likely to be associated with disease and thus are good candidates for genotyping in association studies are identified.
Abstract: We assessed the disease-causing potential of single nucleotide polymorphisms (SNPs) based on a simple set of sequence-based features. We focused on SNPs from the dbSNP database in G-protein-coupled receptors (GPCRs), a large class of important transmembrane (TM) proteins. Apart from the location of the SNP in the protein, we evaluated the predictive power of three major classes of features to differentiate between disease-causing mutations and neutral changes: (i) properties derived from amino-acid scales, such as volume and hydrophobicity; (ii) position-specific phylogenetic features reflecting evolutionary conservation, such as normalized site entropy, residue frequency and SIFT score; and (iii) substitution-matrix scores, such as those derived from the BLOSUM62, GRANTHAM and PHAT matrices. We validated our approach using a control dataset consisting of known disease-causing mutations and neutral variations. Logistic regression analyses indicated that position-specific phylogenetic features that describe the conservation of an amino acid at a specific site are the best discriminators of disease mutations versus neutral variations, and integration of all our features improves discrimination power. Overall, we identify 115 SNPs in GPCRs from dbSNP that are likely to be associated with disease and thus are good candidates for genotyping in association studies.

40 citations

Journal ArticleDOI
TL;DR: A negative binomial regression framework for uniformly processing STARR-seq data is developed, called STARRPeaker, which is applied to comprehensively and unbiasedly call enhancers in the HepG2 and K562 human cell lines.
Abstract: STARR-seq technology has employed progressively more complex genomic libraries and increased sequencing depths. An issue with the increased complexity and depth is that the coverage in STARR-seq experiments is non-uniform, overdispersed, and often confounded by sequencing biases, such as GC content. Furthermore, STARR-seq readout is confounded by RNA secondary structure and thermodynamic stability. To address these potential confounders, we developed a negative binomial regression framework for uniformly processing STARR-seq data, called STARRPeaker. Moreover, to aid our effort, we generated whole-genome STARR-seq data from the HepG2 and K562 human cell lines and applied STARRPeaker to comprehensively and unbiasedly call enhancers in them.

39 citations

Journal ArticleDOI
01 May 2002-Proteins
TL;DR: A structural genomics analysis of the folds and structural superfamilies in the first 20 completely sequenced genomes by focusing on the patterns of fold usage and trying to identify structural characteristics of typical and atypical folds finds that common folds tend be more multifunctional and associated with more regular, “symmetrical” structures than the unique ones.
Abstract: We conducted a structural genomics analysis of the folds and structural superfamilies in the first 20 completely sequenced genomes by focusing on the patterns of fold usage and trying to identify structural characteristics of typical and atypical folds. We assigned folds to sequences using PSI-blast, run with a systematic protocol to reduce the amount of computational overhead. On average, folds could be assigned to about a fourth of the ORFs in the genomes and about a fifth of the amino acids in the proteomes. More than 80% of all the folds in the SCOP structural classification were identified in one of the 20 organisms, with worm and E. coli having the largest number of distinct folds. Folds are particularly effective at comprehensively measuring levels of gene duplication, because they group together even very remote homologues. Using folds, we find the average level of duplication varies depending on the complexity of the organism, ranging from 2.4 in M. genitalium to 32 for the worm, values significantly higher than those observed based purely on sequence similarity. We rank the common folds in the 20 organisms, finding that the top three are the P-loop NTP hydrolase, the ferrodoxin fold, and the TIM-barrel, and discuss in detail the many factors that affect and bias these rankings. We also identify atypical folds that are "unique" to one of the organisms in our study and compare the characteristics of these folds with the most common ones. We find that common folds tend be more multifunctional and associated with more regular, "symmetrical" structures than the unique ones. In addition, many of the unique folds are associated with proteins involved in cell defense (e.g., toxins). We analyze specific patterns of fold occurrence in the genomes by associating some of them with instances of horizontal transfer and others with gene loss. In particular, we find three possible examples of transfer between archaea and bacteria and six between eukarya and bacteria. We make available our detailed results at http://genecensus.org/20.

39 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Abstract: The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSIBLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.

70,111 citations

Journal ArticleDOI
TL;DR: The goals of the PDB are described, the systems in place for data deposition and access, how to obtain further information and plans for the future development of the resource are described.
Abstract: The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and near-term plans for the future development of the resource.

34,239 citations

Journal ArticleDOI
TL;DR: The Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure outperforms other aligners by a factor of >50 in mapping speed.
Abstract: Motivation Accurate alignment of high-throughput RNA-seq data is a challenging and yet unsolved problem because of the non-contiguous transcript structure, relatively short read lengths and constantly increasing throughput of the sequencing technologies. Currently available RNA-seq aligners suffer from high mapping error rates, low mapping speed, read length limitation and mapping biases. Results To align our large (>80 billon reads) ENCODE Transcriptome RNA-seq dataset, we developed the Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure. STAR outperforms other aligners by a factor of >50 in mapping speed, aligning to the human genome 550 million 2 × 76 bp paired-end reads per hour on a modest 12-core server, while at the same time improving alignment sensitivity and precision. In addition to unbiased de novo detection of canonical junctions, STAR can discover non-canonical splices and chimeric (fusion) transcripts, and is also capable of mapping full-length RNA sequences. Using Roche 454 sequencing of reverse transcription polymerase chain reaction amplicons, we experimentally validated 1960 novel intergenic splice junctions with an 80-90% success rate, corroborating the high precision of the STAR mapping strategy. Availability and implementation STAR is implemented as a standalone C++ code. STAR is free open source software distributed under GPLv3 license and can be downloaded from http://code.google.com/p/rna-star/.

30,684 citations

Journal ArticleDOI
TL;DR: Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches and can be used simultaneously to achieve even greater alignment speeds.
Abstract: Bowtie is an ultrafast, memory-efficient alignment program for aligning short DNA sequence reads to large genomes. For the human genome, Burrows-Wheeler indexing allows Bowtie to align more than 25 million reads per CPU hour with a memory footprint of approximately 1.3 gigabytes. Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches. Multiple processor cores can be used simultaneously to achieve even greater alignment speeds. Bowtie is open source http://bowtie.cbcb.umd.edu.

20,335 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations