scispace - formally typeset
Search or ask a question
Author

Mark Goulian

Bio: Mark Goulian is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Histidine kinase & Population. The author has an hindex of 41, co-authored 100 publications receiving 6749 citations. Previous affiliations of Mark Goulian include University of California, Santa Barbara & ExxonMobil.


Papers
More filters
Journal ArticleDOI
TL;DR: The cellular and molecular mechanisms that dictate the specificity of two-component signaling pathways are reviewed, including the role of phosphoryl group transfer, which can then effect changes in cellular physiology, often by regulating gene expression.
Abstract: Two-component signal transduction systems enable bacteria to sense, respond, and adapt to a wide range of environments, stressors, and growth conditions. In the prototypical two-component system, a sensor histidine kinase catalyzes its autophosphorylation and then subsequently transfers the phosphoryl group to a response regulator, which can then effect changes in cellular physiology, often by regulating gene expression. The utility of these signaling systems is underscored by their prevalence throughout the bacterial kingdom and by the fact that many bacteria contain dozens, or sometimes hundreds, of these signaling proteins. The presence of so many highly related signaling proteins in individual cells creates both an opportunity and a challenge. Do cells take advantage of the similarity between signaling proteins to integrate signals or diversify responses, and thereby enhance their ability to process information? Conversely, how do cells prevent unwanted cross-talk and maintain the insulation of distinct pathways? Here we address both questions by reviewing the cellular and molecular mechanisms that dictate the specificity of two-component signaling pathways.

703 citations

Journal ArticleDOI
13 Jun 2008-Cell
TL;DR: The results shed light on the basis of molecular discrimination in two-component signaling pathways, provide a general approach for the rational rewiring of these pathways, and suggest that analyses of coevolution may facilitate the reprogramming of other signaling systems and protein-protein interactions.

480 citations

Journal ArticleDOI
TL;DR: Both RNAP and ribosome radial distributions extend to the cytoplasmic membrane, consistent with the transertion hypothesis, however, few if any RNAP copies lie near the membrane of the endcaps, which suggests that if transertions occurs, it exerts a direct radially expanding force on the nucleoid, but not a direct axially expands force.
Abstract: Quantitative spatial distributions of ribosomes (S2-YFP) and RNA polymerase (RNAP; β'-yGFP) in live Escherichia coli are measured by superresolution fluorescence microscopy. In moderate growth conditions, nucleoid-ribosome segregation is strong, and RNAP localizes to the nucleoid lobes. The mean copy numbers per cell are 4600 RNAPs and 55,000 ribosomes. Only 10-15% of the ribosomes lie within the densest part of the nucleoid lobes, and at most 4% of the RNAPs lie in the two ribosome-rich endcaps. The predominant observed diffusion coefficient of ribosomes is D(ribo) = 0.04 µm(2) s(-1), attributed to free mRNA being translated by one or more 70S ribosomes. We find no clear evidence of subdiffusion, as would arise from tethering of ribosomes to the DNA. The degree of DNA-ribosome segregation strongly suggests that in E. coli most translation occurs on free mRNA transcripts that have diffused into the ribosome-rich regions. Both RNAP and ribosome radial distributions extend to the cytoplasmic membrane, consistent with the transertion hypothesis. However, few if any RNAP copies lie near the membrane of the endcaps. This suggests that if transertion occurs, it exerts a direct radially expanding force on the nucleoid, but not a direct axially expanding force.

415 citations

Journal ArticleDOI
TL;DR: This work analyzes the free energy cost associated with a hydrophobic mismatch using a (liquid-crystal) elastic model of bilayer deformations and shows that, for a protein embedded in a membrane with an initial hydrophilic mismatch of only 1 A, an increase in hydrophobia to 1.3 A can increase the Boltzmann factor 10-fold due to the elastic properties of the bilayer.

328 citations

Journal ArticleDOI
10 Apr 1993-EPL
TL;DR: In this paper, a long-range interaction between foreign inclusions (e.g. mobile proteins) in a fluid membrane which is mediated by the membrane itself was found, which can be attractive or repulsive depending on the temperature and the elastic properties of the inclusion and the membrane, and for large distances is large compared with electrostatic, van der Waals, and other lipid mediated forces.
Abstract: We find a new long-range interaction between foreign inclusions (e.g. mobile proteins) in a fluid membrane which is mediated by the membrane itself. The interaction falls off as 1/R4, can be attractive or repulsive depending on the temperature and the elastic properties of the inclusion and the membrane, and for large distances is large compared with electrostatic, van der Waals, and other lipid-mediated forces.

326 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This review summarizes theoretical progress in the field of active matter, placing it in the context of recent experiments, and highlights the experimental relevance of various semimicroscopic derivations of the continuum theory for describing bacterial swarms and suspensions, the cytoskeleton of living cells, and vibrated granular material.
Abstract: This review summarizes theoretical progress in the field of active matter, placing it in the context of recent experiments. This approach offers a unified framework for the mechanical and statistical properties of living matter: biofilaments and molecular motors in vitro or in vivo, collections of motile microorganisms, animal flocks, and chemical or mechanical imitations. A major goal of this review is to integrate several approaches proposed in the literature, from semimicroscopic to phenomenological. In particular, first considered are ``dry'' systems, defined as those where momentum is not conserved due to friction with a substrate or an embedding porous medium. The differences and similarities between two types of orientationally ordered states, the nematic and the polar, are clarified. Next, the active hydrodynamics of suspensions or ``wet'' systems is discussed and the relation with and difference from the dry case, as well as various large-scale instabilities of these nonequilibrium states of matter, are highlighted. Further highlighted are various large-scale instabilities of these nonequilibrium states of matter. Various semimicroscopic derivations of the continuum theory are discussed and connected, highlighting the unifying and generic nature of the continuum model. Throughout the review, the experimental relevance of these theories for describing bacterial swarms and suspensions, the cytoskeleton of living cells, and vibrated granular material is discussed. Promising extensions toward greater realism in specific contexts from cell biology to animal behavior are suggested, and remarks are given on some exotic active-matter analogs. Last, the outlook for a quantitative understanding of active matter, through the interplay of detailed theory with controlled experiments on simplified systems, with living or artificial constituents, is summarized.

3,314 citations

Journal ArticleDOI
TL;DR: A localization algorithm motivated from least-squares fitting theory is constructed and tested both on image stacks of 30-nm fluorescent beads and on computer-generated images (Monte Carlo simulations), and results show good agreement with the derived precision equation.

2,390 citations

Journal ArticleDOI
TL;DR: Stochasticity in gene expression can provide the flexibility needed by cells to adapt to fluctuating environments or respond to sudden stresses, and a mechanism by which population heterogeneity can be established during cellular differentiation and development.
Abstract: Genetically identical cells exposed to the same environmental conditions can show significant variation in molecular content and marked differences in phenotypic characteristics. This variability is linked to stochasticity in gene expression, which is generally viewed as having detrimental effects on cellular function with potential implications for disease. However, stochasticity in gene expression can also be advantageous. It can provide the flexibility needed by cells to adapt to fluctuating environments or respond to sudden stresses, and a mechanism by which population heterogeneity can be established during cellular differentiation and development.

2,381 citations

Patent
14 Jun 1999
TL;DR: In this paper, a high throughput screen for determining the effect of test compounds on ion channel or transporter activity was proposed, and a method for monitoring ion channel activity in a membrane.
Abstract: The present invention relates to a structure comprising a biological membrane and a porous or perforated substrate, a biological membrane, a substrate, a high throughput screen, methods for production of the structure membrane and substrate, and a method for screening a large number of test compounds in a short period. More particularly it relates to a structure comprising a biological membrane adhered to a porous or perforated substrate, a biological membrane capable of adhering with high resistance seals to a substrate such as perforated glass and the ability to form sheets having predominantly an ion channel or transporter of interest, a high throughput screen for determining the effect of test compounds on ion channel or transporter activity, methods for manufacture of the structure, membrane and substrate, and a method for monitoring ion channel or transporter activity in a membrane.

2,232 citations